ﻻ يوجد ملخص باللغة العربية
In this work, we employ a soft-sphere discrete element method with a cohesion implementation to model the dynamical process of sub-km-sized cohesive rubble piles under continuous spinup. The dependencies of critical spin periods $T_c$ on several material parameters for oblate rubble piles with different bulk diameters $D$ are explored. Our numerical simulations show that both the increase of interparticle cohesion and particle shape parameter in our model can strengthen the bodies, especially for the smaller ones. In addition, we find there exists some critical diameter $D_{cri,rho}$ at which the variation trend of $T_c$ with the bulk density $rho$ reverses. Though a greater static friction coefficient $mu_S$ can strengthen the body, this effect attains a minimum at a critical diameter $D_{cri,phi}$ close to $D_{cri,rho}$. The continuum theory (analytical method) is used for comparison and two equivalent critical diameters are obtained. The numerical results were fitted with the analytical method and the ratio of the interparticle cohesion $c$ to the bulk cohesion $C$ is estimated to be roughly 88.3. We find this ratio keeps constant for different $c$ and $rho$, while it strongly depends on the friction angle $phi$. Also, our numerical results further show that the dependency of $T_c$ on $phi$ is opposite from that predicted by the continuum theory when $D$ < $D_{cri,phi}$. Finally, we find that the two critical diameters happen to be close to the diameter when the mean normal stress of the body equals zero, which is the separation between the compressive regime and the tensile regime.
The rubble pile spin barrier is an upper limit on the rotation rate of asteroids larger than ~200-300 m. Among thousands of asteroids with diameters larger than ~300 m, only a handful of asteroids are known to rotate faster than 2.0 h, all are in the
We numerically investigate how an asteroids elongation controls the sensitivity of its surface to tidal effects during a distant planetary encounter beyond the Roche limit. We analyze the surface slope and its variation by considering the shape elong
There is increasing evidence that many km-sized bodies in the Solar System are piles of rubble bound together by gravity. We present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results
Since the discovery of the first exoplanet we have known that other planetary systems can look quite unlike our own. However, until recently we have only been able to probe the upper range of the planet size distribution. The high precision of the Ke
Thanks to the Gaia mission, it will be possible to determine the masses of approximately hundreds of large main belt asteroids with very good precision. We currently have diameter estimates for all of them that can be used to compute their volume and