ﻻ يوجد ملخص باللغة العربية
The rubble pile spin barrier is an upper limit on the rotation rate of asteroids larger than ~200-300 m. Among thousands of asteroids with diameters larger than ~300 m, only a handful of asteroids are known to rotate faster than 2.0 h, all are in the sub-km range (<=0.6 km). Here we present photometric measurements suggesting that (60716) 2000 GD65, an S-complex, inner-main belt asteroid with a relatively large diameter of 2.3 +0.6-0.7 km, completes one rotation in 1.9529+-0.0002 h. Its unique diameter and rotation period allow us to examine scenarios about asteroid internal structure and evolution: a rubble pile bound only by gravity; a rubble-pile with strong cohesion; a monolithic structure; an asteroid experiencing mass shedding; an asteroid experiencing YORP spin-up/down; and an asteroid with a unique octahedron shape results with a four-peak lightcurve and a 3.9 h period. We find that the most likely scenario includes a lunar-like cohesion that can prevent (60716) 2000 GD65 from disrupting without requiring a monolithic structure or a unique shape. Due to the uniqueness of (60716) 2000 GD65, we suggest that most asteroids typically have smaller cohesion than that of lunar regolith.
In this work, we employ a soft-sphere discrete element method with a cohesion implementation to model the dynamical process of sub-km-sized cohesive rubble piles under continuous spinup. The dependencies of critical spin periods $T_c$ on several mate
We numerically investigate how an asteroids elongation controls the sensitivity of its surface to tidal effects during a distant planetary encounter beyond the Roche limit. We analyze the surface slope and its variation by considering the shape elong
Exploration of asteroid (101955) Bennu by the OSIRIS-REx mission has provided an in-depth look at this rubble-pile near-Earth asteroid. In particular, the measured gravity field and the detailed shape model of Bennu indicate significant heterogeneiti
There is increasing evidence that many km-sized bodies in the Solar System are piles of rubble bound together by gravity. We present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results
We present the characterization of the Kepler-93 exoplanetary system, based on three years of photometry gathered by the Kepler spacecraft. The duration and cadence of the Kepler observations, in tandem with the brightness of the star, enable unusual