ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical parameters of selected Gaia mass asteroids

104   0   0.0 ( 0 )
 نشر من قبل Edyta Podlewska-Gaca
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to the Gaia mission, it will be possible to determine the masses of approximately hundreds of large main belt asteroids with very good precision. We currently have diameter estimates for all of them that can be used to compute their volume and hence their density. However, some of those diameters are still based on simple thermal models, which can occasionally lead to volume uncertainties as high as 20-30%. The aim of this paper is to determine the 3D shape models and compute the volumes for 13 main belt asteroids that were selected from those targets for which Gaia will provide the mass with an accuracy of better than 10%. We used the genetic Shaping Asteroids with Genetic Evolution (SAGE) algorithm to fit disk-integrated, dense photometric lightcurves and obtain detailed asteroid shape models. These models were scaled by fitting them to available stellar occultation and/or thermal infrared observations. We determine the spin and shape models for 13 main belt asteroids using the SAGE algorithm. Occultation fitting enables us to confirm main shape features and the spin state, while thermophysical modeling leads to more precise diameters as well as estimates of thermal inertia values. We calculated the volume of our sample of main-belt asteroids for which the Gaia satellite will provide precise mass determinations. From our volumes, it will then be possible to more accurately compute the bulk density, which is a fundamental physical property needed to understand the formation and evolution processes of small solar system bodies.



قيم البحث

اقرأ أيضاً

We present new photometric observations for twelve asteroids ((122) Gerda, (152) Atala, (260) Huberta, (665) Sabine, (692) Hippodamia, (723) Hammonia, (745) Mauritia, (768) Struveana, (863) Benkoela, (1113) Katja, (1175) Margo, (2057) Rosemary) from the outer part of the main belt aimed to obtain the magnitude-phase curves and to verify geometric albedo and taxonomic class based on their magnitude-phase behaviors. The measured magnitude-phase relations confirm previously determined composition types of (260) Huberta (C-type), (692) Hippodamia (S-type) and (1175) Margo (S-type). Asteroids (665) Sabine and (768) Struveana previously classified as X-type show phase-curve behavior typical for moderate-albedo asteroids and may belong to the M-type. The phase-curve of (723) Hammonia is typical for the S-type which contradicts the previously determined C-type. We confirmed the moderate-albedo of asteroids (122) Gerda and (152) Atala, but their phase-curves are different from typical for the S-type and may indicate more rare compositional types. Based on magnitude-phase behaviors and V-R colors, (2057) Rosemary most probably belongs to M-type, while asteroids (745) Mauritia and (1113) Katja belong to S-complex. The phase curve of the A-type asteroid (863) Benkoela does not cover the opposition effect range and further observations are needed to understand typical features of the phase-curves of A-type asteroids in comparison with other types. We have also determined lightcurve amplitudes of the observed asteroids and obtained new or improved values of the rotation periods for most of them.
99 - A. Mainzer , T. Grav , J. Masiero 2012
Enhancements to the science data processing pipeline of NASAs Wide-field Infrared Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of $>$158,000 minor planets in four infrared wavelengths during the fully cryogenic po rtion of the mission. Following the depletion of its cryogen, NASAs Planetary Science Directorate funded a four month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of $sim$6500 large Main Belt asteroids and 88 NEOs in its 3.4 and 4.6 $mu$m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.
Gaia is an astrometric mission that will be launched in 2013 and set on L2 point of Lagrange. It will observe a large number of Solar System Objets (SSO) down to magnitude 20. The Solar System Science goal is to map thousand of Main Belt asteroids (M BAs), Near Earth Objects (NEOs) (including comets) and also planetary satellites with the principal purpuse of orbital determination (better than 5 mas astrometric precision), determination of asteroid mass, spin properties and taxonomy. Besides, Gaia will be able to discover a few objects, in particular NEOs in the region down to the solar elongation 45{deg} which are harder to detect with current ground-based surveys. But Gaia is not a follow-up mission and newly discovered objects can be lost if no ground-based recovery is processed. The purpose of this study is to quantify the impact of Gaia data for the known NEAs population and to show how to handle the problem of these discoveries when faint number of observations and thus very short arc is provided.
Gaia is an astrometric mission that will be launched in spring 2013. There are many scientific outcomes from this mission and as far as our Solar System is concerned, the satellite will be able to map thousands of main belt asteroids (MBAs) and near- Earth objects (NEOs) down to magnitude < 20. The high precision astrometry (0.3-5 mas of accuracy) will allow orbital improvement, mass determination, and a better accuracy in the prediction and ephemerides of potentially hazardous asteroids (PHAs). We give in this paper some simulation tests to analyse the impact of Gaia data on known asteroids orbit, and their value for the analysis of NEOs through the example of asteroid (99942) Apophis. We then present the need for a follow-up network for newly discovered asteroids by Gaia, insisting on the synergy of ground and space data for the orbital improvement.
{We combine the results of our earlier study of the UV characteristics of 18 classical novae (CNe) with data from the literature and with the recent precise distance determinations from the Gaia satellite to investigate the statistical properties of old novae. All final parameters for the sample include a detailed treatment of the errors and their propagation. The physical properties reported here include the absolute magnitudes at maximum and minimum, a new maximum magnitude versus rate of decline (MMRD) relation, and the inclination-corrected 1100--6000-AA accretion disk luminosity. Most importantly, these data have allowed us to derive a homogenous set of accretion rates in quiescence for the 18 novae. All novae in the sample were super-Eddington during outburst, with an average absolute magnitude at maximum of $-7.5pm1.0$. The average absolute magnitude at minimum corrected for inclination is $3.9pm1.0$. The median mass accretion rate is $logdot{M}_{1Modot}=-8.52$ (using $1Modot$ as WD mass for all novae) or $logdot{M}_{M_{WD}}=-8.48$ (using the individual WD masses). These values are lower than those assumed in studies of CNe evolution and appear to attenuate the need for a hibernation hypothesis to interpret the nova phenomenon. We identified a number of correlations among the physical parameters of the quiescent and eruptive phases, some already known but others new and even surprising. Several quantities correlate with the speed class $t_3$ including, unexpectedly, the mass accretion rate ($dot{M)}$. This rate correlates also with the absolute magnitude at minimum corrected for inclination, and with the outburst amplitude, providing new and simple ways to estimate $dot{M}$ through its functional dependence on (more) easily observed quantities. There is no correlation between $dot{M}$ and the orbital period.}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا