ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical-based thickness measurement of MoO3 nanosheets

56   0   0.0 ( 0 )
 نشر من قبل Andres Castellanos-Gomez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Considering that two-dimensional (2D) molybdenum trioxide has acquired more attention in the last few years, it is relevant to speed up thickness identification of this material. We provide two fast and non-destructive methods to evaluate the thickness of MoO3 flakes on SiO2/Si substrates. First, by means of quantitative analysis of the apparent color of the flakes in optical microscopy images, one can make a first approximation of the thickness with an uncertainty of +-3 nm. The second method is based on the fit of optical contrast spectra, acquired with micro-reflectance measurements, to a Fresnel law-based model that provides an accurate measurement of the flake thickness with +-2 nm of uncertainty.

قيم البحث

اقرأ أيضاً

Indium selenide (InSe), as a novel van der Waals layered semiconductor, has attracted a large research interest thanks to its excellent optical and electrical properties in the ultra-thin limit. Here, we discuss four different optical methods to quan titatively identify the thickness of thin InSe flakes on various substrates, such as SiO2/Si or transparent polymeric substrates. In the case of thin InSe deposited on a transparent substrate, the transmittance of the flake in the blue region of the visible spectrum can be used to estimate the thickness. For InSe supported by SiO2/Si, the thickness of the flakes can be estimated either by assessing their apparent colors or accurately analyzed using a Fresnel-law based fitting model of the optical contrast spectra. Finally, we also studied the thickness dependency of the InSe photoluminescence emission energy, which provides an additional tool to estimate the InSe thickness and it works both for InSe deposited on SiO2/Si and on a transparent polymeric substrate.
The exploitation of phonon-polaritons in nanostructured materials offers a pathway to manipulate infrared (IR) light for nanophotonic applications. Notably, hyperbolic phonons polaritons (HP2) in polar bidimensional crystals have been used to demonst rate strong electromagnetic field confinement, ultraslow group velocities, and long lifetimes (~ up to 8 ps). Here we present nanobelts of {alpha}-phase molybdenum trioxide ({alpha}-MoO3) as a low-dimensional medium supporting HP2 modes in the mid- and far-IR ranges. By real-space nanoimaging, with IR illuminations provided by synchrotron and tunable lasers, we observe that such HP2 response happens via formation of Fabry-Perot resonances. We remark an anisotropic propagation which critically depends on the frequency range. Our findings are supported by the convergence of experiment, theory, and numerical simulations. Our work shows that the low dimensionality of natural nanostructured crystals, like {alpha}-MoO3 nanobelts, provides an attractive platform to study polaritonic light-matter interactions and offer appealing cavity properties that could be harnessed in future designs of compact nanophotonic devices.
216 - Yin Xin , Shi Yeqi , Wei Yanbing 2017
Ionic layer epitaxy (ILE) has recently been developed as an effective strategy to synthesize nanometer-thick 2D materials with a non-layered crystal structure, such as ZnO. The packing density of the amphiphilic monolayer is believed to be a key para meter that controls the nanosheet nucleation and growth. In this work, we systematically investigated the growth behavior of single-crystalline ZnO nanosheets templated at the water-air interface by an anionic oleylsulfate monolayer with different packing densities. The thicknesses of ZnO nanosheets were tuned from one unit cell to four unit cells, and exhibited good correlation with the width of Zn2+ ion concentration zone (the Stern layer) underneath the ionized surfactant monolayer. Further analysis of the nanosheet sizes and density revealed that the nanosheet growth was dominated by the steric hindrance from the surfactant monolayer at lower surface pressure; while the nucleation density became the dominating factor at higher surface pressure. The ZnO nanosheets exhibited a decreasing work function as the thickness reduced to a few unit cells. This research validated a critical hypothesis that the nanosheet growth is self-limited by the formation of a double layer of ionic precursors. This work will open up a new way towards controlled synthesis of novel 2D nanosheets from non-layered materials with a thickness down to one unit cell.
A key challenge in condensed matter research is the optimization of topological insulator (TI) compounds for the study and future application of their unique surface states. Truly insulating bulk states would allow the exploitation of predicted surfa ce state properties, such as protection from backscattering, dissipationless spin-polarized currents, and the emergence of novel particles. Towards this end, major progress was recently made with the introduction of highly resistive Bi$_2$Te$_2$Se, in which surface state conductance and quantum oscillations are observed at low temperatures. Nevertheless, an unresolved and pivotal question remains: while room temperature ARPES studies reveal clear evidence of TI surface states, their observation in transport experiments is limited to low temperatures. A better understanding of this surface state suppression at elevated temperatures is of fundamental interest, and crucial for pushing the boundary of device applications towards room-temperature operation. In this work, we simultaneously measure TI bulk and surface states via temperature dependent optical spectroscopy, in conjunction with transport and ARPES measurements. We find evidence of coherent surface state transport at low temperatures, and propose that phonon mediated coupling between bulk and surface states suppresses surface conductance as temperature rises.
Understanding the nature and energy distribution of optical resonances is of central importance in low-dimensional materials$^{1-4}$ and its knowledge is critical for designing efficient optoelectronic devices. Ruddlesden-Popper halide perovskites ar e 2D solution-processed quantum wells with a general formula A$_2$A$_{n-1}$M$_n$X$_{3n+1}$, where optoelectronic properties can be tuned by varying the perovskite layer thickness (n value), and have recently emerged as efficient semiconductors with technologically relevant stability. However, fundamental questions concerning the nature of optical resonances (excitons or free-carriers) and the exciton reduced mass, and their scaling with quantum well thickness remains unresolved. Here, using optical spectroscopy and 60-Tesla magneto-absorption supported by modelling, we unambiguously demonstrate that the optical resonances arise from tightly bound excitons with unexpectedly high exciton reduced mass (0.20 m0) and binding energies varying from 470 meV to 125 meV with increasing thickness from n=1 to 5. Our work demonstrates the dominant role of Coulomb interactions in 2D solution-processed quantum wells and presents unique opportunities for next-generation optoelectronic and photonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا