ﻻ يوجد ملخص باللغة العربية
Efforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, the highly detailed system characterization required to understand the underlying error sources is an arduous process and impractical with increasing chip size. Open-loop optimal control techniques allow for the improvement of gates but are limited by the models they are based on. To rectify the situation, we provide an integrated open-source tool-set for Control, Calibration and Characterization, capable of open-loop pulse optimization, model-free calibration, model fitting and refinement. We present a methodology to combine these tools to find a quantitatively accurate system model, high-fidelity gates and an approximate error budget, all based on a high-performance, feature-rich simulator. We illustrate our methods using simulated fixed-frequency superconducting qubits for which we learn model parameters with less than 1% error and derive a coherence limited cross-resonance (CR) gate that achieves 99.6% fidelity without need for calibration.
As the field of superconducting quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed fo
As the field of superconducting quantum computing approaches maturity, optimization of single-device performance is proving to be a promising avenue towards large-scale quantum computers. However, this optimization is possible only if performance met
In this work we analyze the implementation of a control-phase gate through the resonance between the $|11rangle$ and $|20rangle$ states of two statically coupled transmons. We find that there are many different controls for the transmon frequency tha
In this work, we develop a method to design control pulses for fixed-frequency superconducting qubits coupled via tunable couplers based on local control theory, an approach commonly employed to steer chemical reactions. Local control theory provides
Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here we build on a recent proposal to construct superconducting devices such as wires, Josephson junct