ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum control of frequency tunable transmon superconducting qubits

77   0   0.0 ( 0 )
 نشر من قبل Erik Torrontegui
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we analyze the implementation of a control-phase gate through the resonance between the $|11rangle$ and $|20rangle$ states of two statically coupled transmons. We find that there are many different controls for the transmon frequency that implement the same gate with fidelities around $99.8%$ ($T_1=T_2^{*}=17$ $mu$s) and $99.99%$ ($T_1=T_2^{*}=300$ $mu$s) within a time that approaches the theoretical limit. All controls can be brought to this accuracy by calibrating the waiting time and the destination frequency near the $|11rangle-|20rangle$ resonance. However, some controls, such as those based on the theory of dynamical invariants, are particularly attractive due to reduced leakage, robustness against decoherence, and their limited bandwidth.

قيم البحث

اقرأ أيضاً

We demonstrate diabatic two-qubit gates with Pauli error rates down to $4.3(2)cdot 10^{-3}$ in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage cha nnel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.
Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50-qubits are actively available. For such systems, fixed-frequency transmon s are attractive due to their long coherence and noise immunity. However, scaling fixed-frequency architectures proves challenging due to precise relative frequency requirements. Here we employ laser annealing to selectively tune transmon qubits into desired frequency patterns. Statistics over hundreds of annealed qubits demonstrate an empirical tuning precision of 18.5 MHz, with no measurable impact on qubit coherence. We quantify gate error statistics on a tuned 65-qubit processor, with median two-qubit gate fidelity of 98.7%. Baseline tuning statistics yield a frequency-equivalent resistance precision of 4.7 MHz, sufficient for high-yield scaling beyond 1000-qubit levels. Moving forward, we anticipate selective laser annealing to play a central role in scaling fixed-frequency architectures.
One of the main limitations in state-of-the art solid-state quantum processors are qubit decoherence and relaxation due to noise in their local environment. For the field to advance towards full fault-tolerant quantum computing, a better understandin g of the underlying microscopic noise sources is therefore needed. Adsorbates on surfaces, impurities at interfaces and material defects have been identified as sources of noise and dissipation in solid-state quantum devices. Here, we use an ultra-high vacuum package to study the impact of vacuum loading, UV-light exposure and ion irradiation treatments on coherence and slow parameter fluctuations of flux tunable superconducting transmon qubits. We analyse the effects of each of these surface treatments by comparing averages over many individual qubits and measurements before and after treatment. The treatments studied do not significantly impact the relaxation rate $Gamma_1$ and the echo dephasing rate $Gamma_2^textrm{e}$, except for Ne ion bombardment which reduces $Gamma_1$. In contrast, flux noise parameters are improved by removing magnetic adsorbates from the chip surfaces with UV-light and NH$_3$ treatments. Additionally, we demonstrate that SF$_6$ ion bombardment can be used to adjust qubit frequencies in-situ and post fabrication without affecting qubit coherence at the sweet spot.
Superconducting qubits are sensitive to a variety of loss mechanisms including dielectric loss from interfaces. By changing the physical footprint of the qubit it is possible to modulate sensitivity to surface loss. Here we show a systematic study of planar superconducting transmons of differing physical footprints to optimize the qubit design for maximum coherence. We find that qubits with small footprints are limited by surface loss and that qubits with large footprints are limited by other loss mechanisms which are currently not understood.
85 - S. Asaad , C. Dickel , S. Poletto 2015
A critical ingredient for realizing large-scale quantum information processors will be the ability to make economical use of qubit control hardware. We demonstrate an extensible strategy for reusing control hardware on same-frequency transmon qubits in a circuit QED chip with surface-code-compatible connectivity. A vector switch matrix enables selective broadcasting of input pulses to multiple transmons with individual tailoring of pulse quadratures for each, as required to minimize the effects of leakage on weakly anharmonic qubits. Using randomized benchmarking, we compare multiple broadcasting strategies that each pass the surface-code error threshold for single-qubit gates. In particular, we introduce a selective-broadcasting control strategy using five pulse primitives, which allows independent, simultaneous Clifford gates on arbitrary numbers of qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا