ﻻ يوجد ملخص باللغة العربية
Recent improvements in materials growth and fabrication techniques may finally allow for superconducting semiconductors to realize their potential. Here we build on a recent proposal to construct superconducting devices such as wires, Josephson junctions, and qubits inside and out-of single crystal silicon or germanium. Using atomistic fabrication techniques such as STM hydrogen lithography, heavily-doped superconducting regions within a single crystal could be constructed. We describe the characteristic parameters of basic superconducting elements---a 1D wire and a tunneling Josephson junction---and estimate the values for boron-doped silicon. The epitaxial, single-crystal nature of these devices, along with the extreme flexibility in device design down to the single-atom scale, may enable lower-noise or new types of devices and physics. We consider applications for such super-silicon devices, showing that the state-of-the-art transmon qubit and the sought-after phase-slip qubit can both be realized. The latter qubit leverages the natural high kinetic inductance of these materials. Building on this, we explore how kinetic inductance based particle detectors (e.g., photon or phonon) could be realized with potential application in astronomy or nanomechanics. We discuss super-semi devices (such as in silicon, germanium, or diamond) which would not require atomistic fabrication approaches and could be realized today.
In recent years semiconducting qubits have undergone a remarkable evolution, making great strides in overcoming decoherence as well as in prospects for scalability, and have become one of the leading contenders for the development of large-scale quan
Superconducting circuits are exceptionally flexible, enabling many different devices from sensors to quantum computers. Separately, epitaxial semiconductor devices such as spin qubits in silicon offer more limited device variation but extraordinary q
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition
When a system is thermally coupled to only a small part of a larger bath, statistical fluctuations of the temperature (more precisely, the internal energy) of this sub-bath around the mean temperature defined by the larger bath can become significant
Full-scale quantum computers require the integration of millions of quantum bits. The promise of leveraging industrial semiconductor manufacturing to meet this requirement has fueled the pursuit of quantum computing in silicon quantum dots. However,