ﻻ يوجد ملخص باللغة العربية
We present a detailed probabilistic and structural analysis of the set of weighted homomorphisms from the discrete torus $mathbb{Z}_m^n$, where $m$ is even, to any fixed graph: we show that the corresponding probability distribution on such homomorphisms is close to a distribution defined constructively as a certain random perturbation of some dominant phase. This has several consequences, including solutions (in a strong form) to conjectures of Engbers and Galvin and a conjecture of Kahn and Park. Special cases include sharp asymptotics for the number of independent sets and the number of proper $q$-colourings of $mathbb{Z}_m^n$ (so in particular, the discrete hypercube). We give further applications to the study of height functions and (generalised) rank functions on the discrete hypercube and disprove a conjecture of Kahn and Lawrenz. For the proof we combine methods from statistical physics, entropy and graph containers and exploit isoperimetric and algebraic properties of the torus.
Subgraph densities have been defined, and served as basic tools, both in the case of graphons (limits of dense graph sequences) and graphings (limits of bounded-degree graph sequences). While limit objects have been described for the middle ranges, t
We study quantitative relationships between the triangle removal lemma and several of its variants. One such variant, which we call the triangle-free lemma, states that for each $epsilon>0$ there exists $M$ such that every triangle-free graph $G$ has
Let $C$ be a general unital AH-algebra and let $A$ be a unital simple $C^*$-algebra with tracial rank at most one. Suppose that $phi, psi: Cto A$ are two unital monomorphisms. We show that $phi$ and $psi$ are approximately unitarily equivalent if and
We consider the following problem arising from the study of human problem solving: Let $G$ be a vertex-weighted graph with marked in and out vertices. Suppose a random walker begins at the in-vertex, steps to neighbors of vertices with probability pr
If the face-cycles at all the vertices in a map on a surface are of same type then the map is called semi-equivelar. There are eleven types of Archimedean tilings on the plane. All the Archimedean tilings are semi-equivelar maps. If a map $X$ on the