ﻻ يوجد ملخص باللغة العربية
Let $C$ be a general unital AH-algebra and let $A$ be a unital simple $C^*$-algebra with tracial rank at most one. Suppose that $phi, psi: Cto A$ are two unital monomorphisms. We show that $phi$ and $psi$ are approximately unitarily equivalent if and only if beq[phi]&=&[psi] {rm in} KL(C,A), phi_{sharp}&=&psi_{sharp}tand phi^{dag}&=&psi^{dag}, eneq where $phi_{sharp}$ and $psi_{sharp}$ are continuous affine maps from tracial state space $T(A)$ of $A$ to faithful tracial state space $T_{rm f}(C)$ of $C$ induced by $phi$ and $psi,$ respectively, and $phi^{ddag}$ and $psi^{ddag}$ are induced homomorphisms from $K_1(C)$ into $Aff(T(A))/bar{rho_A(K_0(A))},$ where $Aff(T(A))$ is the space of all real affine continuous functions on $T(A)$ and $bar{rho_A(K_0(A))}$ is the closure of the image of $K_0(A)$ in the affine space $Aff(T(A)).$ In particular, the above holds for $C=C(X),$ the algebra of continuous functions on a compact metric space. An approximate version of this is also obtained. We also show that, given a triple of compatible elements $kappain KL_e(C,A)^{++},$ an affine map $gamma: T(C)to T_{rm f}(C)$ and a hm $af: K_1(C)to Aff(T(A))/bar{rho_A(K_0(A))},$ there exists a unital monomorphism $phi: Cto A$ such that $[h]=kappa,$ $h_{sharp}=gamma$ and $phi^{dag}=af.$
Let $C$ be a unital AH-algebra and $A$ be a unital simple C*-algebra with tracial rank zero. It has been shown that two unital monomorphisms $phi, psi: Cto A$ are approximately unitarily equivalent if and only if $$ [phi]=[psi] {rm in} KL(C,A) and ta
Let $X$ be a compact metric space and let $Lambda$ be a $Z^k$ ($kge 1$) action on $X.$ We give a solution to a version of Voiculescus problem of AF-embedding: The crossed product $C(X)rtimes_{Lambda}Z^k$ can be embedded into a unital simple AF-algebr
An n-homomorphism between algebras is a linear map $phi : A to B$ such that $phi(a_1 ... a_n) = phi(a_1)... phi(a_n)$ for all elements $a_1, >..., a_n in A.$ Every homomorphism is an n-homomorphism, for all n >= 2, but the converse is false, in gener
We study reflexivity and structure properties of operator algebras generated by representations of the discrete Heisenberg semi-group. We show that the left regular representation of this semi-group gives rise to a semi-simple reflexive algebra. We e
Starting with a vertex-weighted pointed graph $(Gamma,mu,v_0)$, we form the free loop algebra $mathcal{S}_0$ defined in Hartglass-Penneys article on canonical $rm C^*$-algebras associated to a planar algebra. Under mild conditions, $mathcal{S}_0$ is