ﻻ يوجد ملخص باللغة العربية
We present an experimental study of the saturated non-linear dynamics of an inertial wave attractor in an axisymmetric geometrical setting. The experiments are carried out in a rotating ring-shaped fluid domain delimited by two vertical coaxial cylinders, a conical bottom, and a horizontal deformable upper lid as wave generator: the meridional cross-section of the fluid volume is a trapezium, while the horizontal cross-section is a ring. First, the fluid is set into a rigid-body rotation. Thereafter, forcing is introduced into the system via axisymmetric low-amplitude volume-conserving oscillatory motion of the upper lid. After a short transient of about 10 forcing periods, a quasi-linear regime is established, with an axisymmetric inertial wave attractor. The attractor is prone to instability: at long time-scale (order 100 forcing periods) a saturated fully non-linear regime develops as a consequence of an energy cascade draining energy towards a slow two-dimensional manifold represented by a regular polygonal system of axially-oriented cyclonic vortices that are slowly precessing around the inner cylinder. We show that this slow two-dimensional manifold manifests a persistent slow prograde motion and a strong cyclonic-anticyclonic asymmetry quantified by the time-evolution of the probability density function of the vertical vorticity.
In this paper, we present an experimental study of weakly non-linear interaction of axisymmetric internal gravity waves in a resonant cavity, supported by theoretical considerations. Contrary to plane waves in Cartesian coordinates, for which self-in
Vortex breakdown phenomena in the axial vortices is an important feature which occurs frequently in geophysical flows (tornadoes and hurricanes) and in engineering flows (flow past delta wings, Von-Kerman vortex dynamo). We analyze helicity for axisy
We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes
We present results for the equilibrium statistics and dynamic evolution of moderately large ($n = {mathcal{O}}(10^2 - 10^3)$) numbers of interacting point vortices on the unit sphere under the constraint of zero mean angular momentum. We consider a b
To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave fields generated by storm cells and oceanic near-inertial wave fields generated by surface storms, have been experimentally realized using an oscillating sp