ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental self-generation of axisymmetric internal wave super-harmonics

65   0   0.0 ( 0 )
 نشر من قبل Samuel Boury
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present an experimental study of weakly non-linear interaction of axisymmetric internal gravity waves in a resonant cavity, supported by theoretical considerations. Contrary to plane waves in Cartesian coordinates, for which self-interacting terms are null in a linear stratifiation, the non-linear self-interaction of an internal wave mode in axisymmetric geometry is found to be efficient at producing super-harmonics, i.e. waves whose frequencies are integer multiples of the excitation frequency. Due to the range of frequencies tested in our experiments, the first harmonic frequency is below the cut-off imposed by the stratification so the lowest harmonic created can always propagate. The study shows that the super-harmonic wave field is a sum of standing waves satisfying both the dispersion relation for internal waves and the boundary conditions imposed by the cavity walls, while conserving the axisymmetry.



قيم البحث

اقرأ أيضاً

We present an experimental study of the saturated non-linear dynamics of an inertial wave attractor in an axisymmetric geometrical setting. The experiments are carried out in a rotating ring-shaped fluid domain delimited by two vertical coaxial cylin ders, a conical bottom, and a horizontal deformable upper lid as wave generator: the meridional cross-section of the fluid volume is a trapezium, while the horizontal cross-section is a ring. First, the fluid is set into a rigid-body rotation. Thereafter, forcing is introduced into the system via axisymmetric low-amplitude volume-conserving oscillatory motion of the upper lid. After a short transient of about 10 forcing periods, a quasi-linear regime is established, with an axisymmetric inertial wave attractor. The attractor is prone to instability: at long time-scale (order 100 forcing periods) a saturated fully non-linear regime develops as a consequence of an energy cascade draining energy towards a slow two-dimensional manifold represented by a regular polygonal system of axially-oriented cyclonic vortices that are slowly precessing around the inner cylinder. We show that this slow two-dimensional manifold manifests a persistent slow prograde motion and a strong cyclonic-anticyclonic asymmetry quantified by the time-evolution of the probability density function of the vertical vorticity.
To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave fields generated by storm cells and oceanic near-inertial wave fields generated by surface storms, have been experimentally realized using an oscillating sp here or torus as the source. Here, we use a novel wave generator configuration capable of exciting axisymmetric internal wave fields of arbitrary radial form to generate axisymmetric internal wave modes. After establishing the theoretical background for axisymmetric mode propagation, taking into account lateral and vertical confinement, and also accounting for the effects of weak viscosity, we experimentally generate and study modes of different order. We characterize the efficiency of the wave generator through careful measurement of the wave amplitude based upon group velocity arguments. This established, we investigate the ability of vertical confinement to induce resonance, identifying a series of experimental resonant peaks that agree well with theoretical predictions. In the vicinity of resonance, the wave fields undergo a transition to non-linear behaviour that is initiated on the central axis of the domain and proceeds to erode the wave field throughout the domain.
To date, the influence of non-linear stratifications and two layer stratifications on internal wave propagation has been studied for two-dimensional wave fields in a cartesian geometry. Here, we use a novel wave generator configuration to investigate transmission in non-linear stratifications of axisymmetric internal wave. Two configurations are studied, both theoretically and experimentally. In the case of a free incident wave, a transmission maximum is found in the vicinity of evanescent frequencies. In the case of a confined incident wave, resonant effects lead to enhanced transmission rates from an upper layer to layer below. We consider the oceanographic relevance of these results by applying them to an example oceanic stratification, finding that there can be real-world implications.
We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at high vertical wavenumber. Such values of the transfer rates are inconsistent with conventional wisdom that regards the Garrett and Munk spectrum as an approximate stationary state and puts the self-consistency of a resonant kinetic equation at a serious risk. We explore possible reasons for and resolutions of this paradox. Inclusion of near-resonant interactions decreases the rate at which the spectrum evolves. This leads to improved self-consistency of the kinetic equation.
We investigate theoretically the onset of capillary-gravity waves created by a small object moving at the water-air interface. It is well established that, for straight uniform motion, no steady waves appear at velocities below the minimum phase velo city $c_text{min} = 23 {rm cm/s}$. At higher velocities the emission of capillary-gravity waves creates an additional drag force. The behavior of this force near the critical velocity is still poorly understood. A linear response theory where the object is replaced by an effective pressure source predicts a singular behavior for the wave drag. However, experimental data tends to indicate a more continuous transition. In this article, we show that a proper treatment of the flow equations around the obstacle can regularize wave emission, even in the linear wave approximation, thereby ensuring a continuous behavior of the drag force.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا