ﻻ يوجد ملخص باللغة العربية
We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincare equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $sin(pi/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.
We propose a numerical method to compute the inertial modes of a container with near-spherical geometry based on the fully spectral discretisation of the angular and radial directions using spherical harmonics and Gegenbauer polynomial expansion resp
We investigate the linear properties of the steady and axisymmetric stress-driven spin-down flow of a viscous fluid inside a spherical shell, both within the incompressible and anelastic approximations, and in the asymptotic limit of small viscositie
Oscillations have been detected in a variety of stars, including intermediate- and high-mass main sequence stars. While many of these stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In thi
We reveal and investigate a new type of linear axisymmetric helical magnetorotational instability which is capable of destabilizing viscous and resistive rotational flows with radially increasing angular velocity, or positive shear. This instability
While many intermediate- and high-mass main sequence stars are rapidly and differentially rotating, the effects of rotation on oscillation modes are poorly known. In this communication we present a first study of axisymmetric gravito-inertial modes i