ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraint on phase transition with the multimessenger data of neutron stars

158   0   0.0 ( 0 )
 نشر من قبل Shaopeng Tang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equation of state (EoS) of the neutron star (NS) matter remains an enigma. In this work we perform the Bayesian parameter inference with the gravitational wave data (GW170817) and mass-radius observations of some NSs (PSR J0030+0451, PSR J0437-4715, and 4U 1702-429) using the phenomenologically constructed EoS models to search for a potential first-order phase transition. Our phenomenological EoS models take the advantages of current widely used parametrizing methods, which are flexible enough to resemble various theoretical EoS models. We find that the current observation data are still not informative enough to support/rule out phase transition, due to the comparable evidences for models with and without phase transition. However, the bulk properties of the canonical $1.4,M_odot$ NS and the pressure at around $2rho_{rm sat}$ are well constrained by the data, where $rho_{rm sat}$ is the nuclear saturation density. Moreover, strong phase transition at low densities is disfavored, and the $1sigma$ lower bound of transition density is constrained to $1.84rho_{rm sat}$.



قيم البحث

اقرأ أيضاً

Gravitational waves detected from the binary neutron star (NS) merger GW170817 constrained the NS equation of state by placing an upper bound on certain parameters describing the binarys tidal interactions. We show that the interpretation of the UV/o ptical/infrared counterpart of GW170817 with kilonova models, combined with new numerical relativity results, imply a complementary lower bound on the tidal deformability parameter. The joint constraints tentatively rule out both extremely stiff and soft NS equations of state.
We report the results of a study aimed at inferring direct information on the repulsive three-nucleon potential $V^R_{ijk}$textemdash driving the stiffness of the nuclear matter equation of state at supranuclear densitiestextemdash from astrophysical observations. Using a Bayesian approach, we exploit the measurements of masses, radii and tidal deformabalities performed by the NICER satellite and the LIGO/Virgo collaboration, as well as the mass of the heaviest observed pulsar, to constrain the strength of $V^R_{ijk}$. The baseline of our analysis is the widely employed nuclear Hamiltonian comprising the Argonne $v_{18}$ nucleon-nucleon potential andthe Urbana IX model of three-nucleon potential. The numerical results, largely determined by the bound on the maximum mass, suggest that existing and future facilities have the potential to provide valuable new insight into microscopic nuclear dynamics at supranuclear densities.
We study the dynamical evolution of a phase-transition-induced collapse neutron star to a hybrid star, which consists of a mixture of hadronic matter and strange quark matter. The collapse is triggered by a sudden change of equation of state, which r esult in a large amplitude stellar oscillation. The evolution of the system is simulated by using a 3D Newtonian hydrodynamic code with a high resolution shock capture scheme. We find that both the temperature and the density at the neutrinosphere are oscillating with acoustic frequency. However, they are nearly 180$^{circ}$ out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron pair creation rate can be enhanced dramatically. Some mass layers on the stellar surface can be ejected by absorbing energy of neutrinos and pairs. These mass ejecta can be further accelerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. The possible connection between this process and the cosmological Gamma-ray Bursts is discussed.
188 - Kilar Zhang , Feng-Li Lin 2020
Motivated by the recent discoveries of compact objects from LIGO/Virgo observations, we study the possibility of identifying some of these objects as compact stars made of dark matter called dark stars, or the mix of dark and nuclear matters called h ybrid stars. In particular, in GW190814, a new compact object with 2.6 $M_{odot}$ is reported. This could be the lightest black hole, the heaviest neutron star, and a dark or hybrid star. In this work, we extend the discussion on the interpretations of the recent LIGO/Virgo events as hybrid stars made of various self-interacting dark matter (SIDM) in the isotropic limit. We pay particular attention to the saddle instability of the hybrid stars which will constrain the possible SIDM models.
Some thermonuclear (type I) X-ray bursts at the neutron star surfaces in low-mass X-ray binaries take place during hard persistent states of the systems. Spectral evolution of these bursts is well described by the atmosphere model of a passively cool ing neutron star when the burst luminosity is high enough. The observed spectral evolution deviates from the model predictions when the burst luminosity drops below a critical value of 20-70% of the maximum luminosity. We suggest that these deviations are induced by the additional heating of the accreted particles. We present a method for computation of the neutron star atmosphere models heated by accreted particles assuming that their energy is released via Coulomb interactions with electrons. We compute the temperature structures and the emergent spectra of the atmospheres of various chemical compositions and investigate the dependence of the results on the other model parameters. We show that the heated atmosphere develops the hot (20--100 keV) corona-like surface layer cooled by Compton scattering, and the deeper, almost isothermal optically thick region with a temperature of a few keV. The emergent spectra deviate strongly from those of undisturbed neutron star atmospheres, with the main differences being the presence of a high-energy tail and a strong excess in the low-energy part of the spectrum. They also lack the iron absorption edge, which is visible in the spectra of undisturbed low-luminosity atmospheres with solar chemical composition. Using the computed spectra, we obtained the dependences of the dilution and color-correction factors as functions of relative luminosities for pure helium and solar abundance atmospheres. We show that the helium model atmosphere heated by accretion corresponding to 5% of the Eddington luminosity describes well the late stages of the X-ray bursts in 4U 1820-30.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا