ﻻ يوجد ملخص باللغة العربية
Gravitational waves detected from the binary neutron star (NS) merger GW170817 constrained the NS equation of state by placing an upper bound on certain parameters describing the binarys tidal interactions. We show that the interpretation of the UV/optical/infrared counterpart of GW170817 with kilonova models, combined with new numerical relativity results, imply a complementary lower bound on the tidal deformability parameter. The joint constraints tentatively rule out both extremely stiff and soft NS equations of state.
The first detection of gravitational waves from a neutron star-neutron star merger, GW170817, has opened up a new avenue for constraining the ultradense-matter equation of state (EOS). The deviation of the observed waveform from a point-particle wave
The equation of state (EoS) of the neutron star (NS) matter remains an enigma. In this work we perform the Bayesian parameter inference with the gravitational wave data (GW170817) and mass-radius observations of some NSs (PSR J0030+0451, PSR J0437-47
As revealed recently by the modeling of the multi-wavelength data of the emission following GW170817/GRB 170817A, there was an off-axis energetic relativistic outflow component launched by this historic double neutron star merger event. In this work
The increasing number and precision of measurements of neutron star masses, radii, and, in the near future, moments of inertia offer the possibility of precisely determining the neutron star equation of state. One way to facilitate the mapping of obs
Gravitational waves (GWs) from inspiralling neutron stars afford us a unique opportunity to infer the as-of-yet unknown equation of state of cold hadronic matter at supranuclear densities. The dominant matter effects are due to the stars response to