ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect engineering for control of wake-up effect in HfO2-based ferroelectrics

147   0   0.0 ( 0 )
 نشر من قبل Alireza Kashir
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wake-up effect is still an obstacle in the commercialization of hafnia-based ferroelectric thin films. In this work, we investigate the effect of defects, controlled by ozone dosage, on the field cycling behavior of the atomic layer deposited Hf0.5Zr0.5O2 (HZO) films. A nearly wake-up free device was achieved after reduction of carbon contamination and oxygen defects by increasing the ozone dosage. The sample which was grown at 30 sec ozone pulse duration shows about 98% of the woken-up Pr at the pristine state while those grown below 5 sec ozone pulse time show a pinched hysteresis loop, undergone a large wake-up effect. This behavior is attributed to the increase in oxygen vacancy and carbon concentration in the films deposited at insufficient O3 dosage which was confirmed by x-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) scan shows that the increase of ozone pulse time yields in the reduction of tetragonal phase; therefore, the dielectric constant reduces. The I-V measurements reveal the increase of current density as the ozone dosage decreases which might be due to the generation of oxygen vacancies in the deposited film. Finally, we have investigated the dynamics of wake-up effect and it appears to be explained well by Johnson-Mehl-Avrami-Kolmogoroff model which is based on structural phase transformation.



قيم البحث

اقرأ أيضاً

HfO2, a simple binary oxide, holds ultra-scalable ferroelectricity integrable into silicon technology. Polar orthorhombic (Pbc21) form in ultra-thin-films ascribes as the plausible root-cause of the astonishing ferroelectricity, which has thought not attainable in bulk crystals. Though, perplexities remain primarily due to the polymorphic nature and the characterization challenges at small-length scales. Herein, utilizing a state-of-the-art Laser-Diode-heated Floating Zone technique, we report ferroelectricity in bulk single-crystalline HfO2:Y as well as the presence of anti-polar Pbca phase at different Y concentrations. Neutron diffraction and atomic imaging demonstrate (anti-)polar crystallographic signatures and abundant 90o/180o ferroelectric domains in addition to the switchable polarization with little wake-up effects. Density-functional theory calculations suggest that the Yttrium doping and rapid cooling are the key factors for the desired phase. Our observations provide new insights into the polymorphic nature and phase controlling of HfO2, remove the upper size limit for ferroelectricity, and also pave a new road toward the next-generation ferroelectric devices.
The correlation between the shift current mechanism for the bulk photovoltaic effect (BPVE) and the structural and electronic properties of ferroelectric perovskite oxides is not well understood. Here, we study and engineer the shift current photovol taic effect using a visible-light-absorbing ferroelectric Pb(Ni$_{x}$Ti$_{1-x}$)O$_{3-x}$ solid solution from first principles. We show that the covalent orbital character dicates the direction, magnitude, and onset energy of shift current in a predictable fashion. In particular, we find that the shift current response can be enhanced via electrostatic control in layered ferroelectrics, as bound charges face a stronger impetus to screen the electric field in a thicker material, delocalizing electron densities. This heterogeneous layered structure with alternative photocurrent generating and insulating layers is ideal for BPVE applications.
The topological Hall effect (THE) has been discovered in ultrathin SrRuO3 (SRO) films, where the interface between the SRO layer and another oxide layer breaks the inversion symmetry resulting in the appearance of THE. Thus, THE only occurs in ultra- thin SRO films of several unit cells. In addition to employing a heterostructure, the inversion symmetry can be broken intrinsically in bulk SRO by introducing defects. In this study THE is observed in 60 nm thick SRO films, in which defects and lattice distortions are introduced by helium ion irradiation. The irradiated SRO films exhibit a pronounced THE in a wide temperature range from 5 K to 80 K. These observations can be attributed to the emergence of Dzyaloshinskii-Moriya interaction as a result of artificial inversion symmetry breaking associated to the lattice defect engineering. The creation and control of the THE in oxide single layers can be realized by ex situ film processing. Therefore, this work provides new insights into the THE and illustrates a promising strategy to design novel spintronics devices.
We propose a model of magneto-electric effect in doped magnetic ferroelectrics. This magneto-electric effect does not involve the spin-orbit coupling and is based purely on the Coulomb interaction. We calculate magnetic phase diagram of doped magneti c ferroelectrics. We show that magneto-electric coupling is pronounced only for ferroelectrics with low dielectric constant. We find that magneto-electric coupling leads to modification of magnetization temperature dependence in the vicinity of ferroelectric phase transition. A peak of magnetization appears. We find that magnetization of doped magnetic ferroelectrics strongly depends on applied electric field.
130 - Jie Jiang , Chongyi Ling , Tao Xu 2018
Defect induced trap states are essential in determining the performance of semiconductor photodetectors. The de-trap time of carriers from a deep trap could be prolonged by several orders of magnitude as compared to shallow trap, resulting in additio nal decay/response time of the device. Here, we demonstrate that the trap states in two-dimensional ReS2 could be efficiently modulated by defect engineering through molecule decoration. The deep traps that greatly prolong the response time could be mostly filled by Protoporphyrin (H2PP) molecules. At the same time, carrier recombination and shallow traps would in-turn play dominant roles in determining the decay time of the device, which can be several orders of magnitude faster than the as-prepared device. Moreover, the specific detectivity of the device is enhanced (as high as ~1.89 x 10^13 Jones) due to the significant reduction of dark current through charge transfer between ReS2 and molecules. Defect engineering of trap states therefore provides a solution to achieve photodetectors with both high responsivity and fast response.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا