ﻻ يوجد ملخص باللغة العربية
Defect induced trap states are essential in determining the performance of semiconductor photodetectors. The de-trap time of carriers from a deep trap could be prolonged by several orders of magnitude as compared to shallow trap, resulting in additional decay/response time of the device. Here, we demonstrate that the trap states in two-dimensional ReS2 could be efficiently modulated by defect engineering through molecule decoration. The deep traps that greatly prolong the response time could be mostly filled by Protoporphyrin (H2PP) molecules. At the same time, carrier recombination and shallow traps would in-turn play dominant roles in determining the decay time of the device, which can be several orders of magnitude faster than the as-prepared device. Moreover, the specific detectivity of the device is enhanced (as high as ~1.89 x 10^13 Jones) due to the significant reduction of dark current through charge transfer between ReS2 and molecules. Defect engineering of trap states therefore provides a solution to achieve photodetectors with both high responsivity and fast response.
Topological defects (including disclinations and dislocations) which commonly exist in various materials have shown an amazing ability to produce excellent mechanical and physical properties of matters. In this paper, disclinations and dislocations a
Hybrid graphene photoconductor/phototransistor has achieved giant photoresponsivity, but its response speed dramatically degrades as the expense due to the long lifetime of trapped interfacial carriers. In this work, by intercalating a large-area ato
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. While extrinsic mechanisms can in general be minimized
Low-dimensional semiconducting ferromagnets have attracted considerable attention due to their promising applications as nano-size spintronics. However, realizing robust ferromagnetic couplings that can survive at high temperature is restrained by tw
Defects in 2D materials are becoming prominent candidates for quantum emitters and scalable optoelectronic applications. However, several physical properties that characterize their behavior, such as charged defect ionization energies, are difficult