ﻻ يوجد ملخص باللغة العربية
The control of bilinear systems has attracted considerable attention in the field of systems and control for decades, owing to their prevalence in diverse applications across science and engineering disciplines. Although much work has been conducted on analyzing controllability properties, the mostly used tool remains the Lie algebra rank condition. In this paper, we develop alternative approaches based on theory and techniques in combinatorics to study controllability of bilinear systems. The core idea of our methodology is to represent vector fields of a bilinear system by permutations or graphs, so that Lie brackets are represented by permutation multiplications or graph operations, respectively. Following these representations, we derive combinatorial characterization of controllability for bilinear systems, which consequently provides novel applications of symmetric group and graph theory to control theory. Moreover, the developed combinatorial approaches are compatible with Lie algebra decompositions, including the Cartan and non-intertwining decomposition. This compatibility enables the exploitation of representation theory for analyzing controllability, which allows us to characterize controllability properties of bilinear systems governed by semisimple and reductive Lie algebras.
In this paper we present necessary and sufficient conditions to guarantee the existence of invariant cones, for semigroup actions, in the space of the $k$-fold exterior product. As consequence we establish a necessary and sufficient condition for con
In this paper, we study graphical conditions for structural controllability and accessibility of drifted bilinear systems over Lie groups. We consider a bilinear control system with drift and controlled terms that evolves over the special orthogonal
In this article we discuss which controllability properties of classical Hamiltonian systems are preserved after quantization. We discuss some necessary and some sufficient conditions for small-time controllability of classical systems and quantum sy
In a separable Hilbert space $X$, we study the linear evolution equation begin{equation*} u(t)+Au(t)+p(t)Bu(t)=0, end{equation*} where $A$ is an accretive self-adjoint linear operator, $B$ is a bounded linear operator on $X$, and $pin L^2_{loc}(0,+in
For homogeneous bilinear control systems, the control sets are characterized using a Lie algebra rank condition for the induced systems on projective space. This is based on a classical Diophantine approximation result. For affine control systems, th