ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact controllability to the ground state solution for evolution equations of parabolic type via bilinear control

67   0   0.0 ( 0 )
 نشر من قبل Piermarco Cannarsa
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In a separable Hilbert space $X$, we study the linear evolution equation begin{equation*} u(t)+Au(t)+p(t)Bu(t)=0, end{equation*} where $A$ is an accretive self-adjoint linear operator, $B$ is a bounded linear operator on $X$, and $pin L^2_{loc}(0,+infty)$ is a bilinear control. We give sufficient conditions in order for the above control system to be locally controllable to the ground state solution, that is, the solution of the free equation ($pequiv0$) starting from the ground state of $A$. We also derive global controllability results in large time and discuss applications to parabolic equations in low space dimension.



قيم البحث

اقرأ أيضاً

We prove rapid stabilizability to the ground state solution for a class of abstract parabolic equations of the form begin{equation*} u(t)+Au(t)+p(t)Bu(t)=0,qquad tgeq0 end{equation*} where the operator $-A$ is a self-adjoint accretive operator on a H ilbert space and $p(cdot)$ is the control function. The proof is based on a linearization argument. We prove that the linearized system is exacly controllable and we apply the moment method to build a control $p(cdot)$ that steers the solution to the ground state in finite time. Finally, we use such a control to bring the solution of the nonlinear equation arbitrarily close to the ground state solution with doubly exponential rate of convergence. We give several applications of our result to different kinds of parabolic equations.
The aim of this paper is to prove the superexponential stabilizability to the ground state solution of a degenerate parabolic equation of the form begin{equation*} u_t(t,x)+(x^{alpha}u_x(t,x))_x+p(t)x^{2-alpha}u(t,x)=0,qquad tgeq0,xin(0,1) end{equati on*} via bilinear control $pin L_{loc}^2(0,+infty)$. More precisely, we provide a control function $p$ that steers the solution of the equation, $u$, to the ground state solution in small time with doubly-exponential rate of convergence. The parameter $alpha$ describes the degeneracy magnitude. In particular, for $alphain[0,1)$ the problem is called weakly degenerate, while for $alphain[1,2)$ strong degeneracy occurs. We are able to prove the aforementioned stabilization property for $alphain [0,3/2)$. The proof relies on the application of an abstract result on rapid stabilizability of parabolic evolution equations by the action of bilinear control. A crucial role is also played by Bessels functions.
In this paper we present a null controllability result for a degenerate semilinear parabolic equation with first order terms. The main result is obtained after the proof of a new Carleman inequality for a degenerate linear parabolic equation with first order terms.
The aim of this paper is to perform a Stackelberg strategy to control parabolic equations. We have one control, textit{the leader}, that is responsible for a null controllability property; additionally, we have a control textit{the follower} that sol ves a robust control objective. That means, that we seek for a saddle point of a cost functional. In this way, the follower control is not sensitive to a broad class of external disturbances. As far as we know, the idea of combining robustness with a Stackelberg strategy is new in literature
In this paper we present necessary and sufficient conditions to guarantee the existence of invariant cones, for semigroup actions, in the space of the $k$-fold exterior product. As consequence we establish a necessary and sufficient condition for con trollability of a class of bilinear control systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا