ترغب بنشر مسار تعليمي؟ اضغط هنا

Typical ground states for large sets of interactions

231   0   0.0 ( 0 )
 نشر من قبل Aernout Coert Daniel van Enter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss what ground states for generic interactions look like. We note that a recent result, due to Morris, implies that the behaviour of ground-state measures for generic interactions is similar to that of generic measures. In particular, it follows from his observation that they have singular spectrum and that they are weak mixing, but not mixing.



قيم البحث

اقرأ أيضاً

We construct for the first time examples of non-frustrated, two-body, infinite-range, one-dimensional classical lattice-gas models without periodic ground-state configurations. Ground-state configurations of our models are Sturmian sequences defined by irrational rotations on the circle. We present minimal sets of forbidden patterns which define Sturmian sequences in a unique way. Our interactions assign positive energies to forbidden patterns and are equal to zero otherwise. We illustrate our construction by the well-known example of the Fibonacci sequences.
Across many scientific and engineering disciplines, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we study the robustness of the ground states of $pm J$ spin glasses on random graph s to flips of the interactions. For a sparse graph, a dense graph, and the fully connected Sherrington-Kirkpatrick model, we find relatively large sets of interactions that generate the same ground state. These sets can themselves be analyzed as sub-graphs of the interaction domain, and we compute many of their topological properties. In particular, we find that the robustness of these sub-graphs is much higher than one would expect from a random model. Most notably, it scales in the same logarithmic way with the size of the sub-graph as has been found in genotype-phenotype maps for RNA secondary structure folding, protein quaternary structure, gene regulatory networks, as well as for models for genetic programming. The similarity between these disparate systems suggests that this scaling may have a more universal origin.
We consider Dyson models, Ising models with slow polynomial decay, at low temperature and show that its Gibbs measures deep in the phase transition region are not $g$-measures. The main ingredient in the proof is the occurrence of an entropic repulsi on effect, which follows from the mesoscopic stability of a (single-point) interface for these long-range models in the phase transition region.
We consider charge transport for interacting many-body systems with a gapped ground state subspace which is finitely degenerate and topologically ordered. To any locality-preserving, charge-conserving unitary that preserves the ground state space, we associate an index that is an integer multiple of $1/p$, where $p$ is the ground state degeneracy. We prove that the index is additive under composition of unitaries. This formalism gives rise to several applications: fractional quantum Hall conductance, a fractional Lieb-Schultz-Mattis theorem that generalizes the standard LSM to systems where the translation-invariance is broken, and the interacting generalization of the Avron-Dana-Zak relation between Hall conductance and the filling factor.
We completely solve the problem of classifying all one-dimensional quantum potentials with nearest- and next-to-nearest-neighbors interactions whose ground state is Jastrow-like, i.e., of Jastrow type but depending only on differences of consecutive particles. In particular, we show that these models must necessarily contain a three-body interaction term, as was the case with all previously known examples. We discuss several particular instances of the general solution, including a new hyperbolic potential and a model with elliptic interactions which reduces to the known rational and trigonometric ones in appropriate limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا