ﻻ يوجد ملخص باللغة العربية
We construct for the first time examples of non-frustrated, two-body, infinite-range, one-dimensional classical lattice-gas models without periodic ground-state configurations. Ground-state configurations of our models are Sturmian sequences defined by irrational rotations on the circle. We present minimal sets of forbidden patterns which define Sturmian sequences in a unique way. Our interactions assign positive energies to forbidden patterns and are equal to zero otherwise. We illustrate our construction by the well-known example of the Fibonacci sequences.
We discuss what ground states for generic interactions look like. We note that a recent result, due to Morris, implies that the behaviour of ground-state measures for generic interactions is similar to that of generic measures. In particular, it foll
The Embedded-Atom Model (EAM) provides a phenomenological description of atomic arrangements in metallic systems. It consists of a configurational energy depending on atomic positions and featuring the interplay of two-body atomic interactions and no
We give efficient quantum algorithms to estimate the partition function of (i) the six vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi 2D square latt
Models of quantum and classical particles on the d-dimensional cubic lattice with pair interparticle interactions are considered. The classical model is obtained from the corresponding quantum one when the reduced physical mass of the particle tends
We construct lattice parafermions - local products of order and disorder operators - in nearest-neighbor Z(N) models on regular isotropic planar lattices, and show that they are discretely holomorphic, that is they satisfy discrete Cauchy-Riemann equ