ﻻ يوجد ملخص باللغة العربية
We consider charge transport for interacting many-body systems with a gapped ground state subspace which is finitely degenerate and topologically ordered. To any locality-preserving, charge-conserving unitary that preserves the ground state space, we associate an index that is an integer multiple of $1/p$, where $p$ is the ground state degeneracy. We prove that the index is additive under composition of unitaries. This formalism gives rise to several applications: fractional quantum Hall conductance, a fractional Lieb-Schultz-Mattis theorem that generalizes the standard LSM to systems where the translation-invariance is broken, and the interacting generalization of the Avron-Dana-Zak relation between Hall conductance and the filling factor.
In this short note, I review some recent results about gapped ground state phases of quantum spin systems and discuss the notion of topological order.
We propose a many-body index that extends Fredholm index theory to many-body systems. The index is defined for any charge-conserving system with a topologically ordered $p$-dimensional ground state sector. The index is fractional with the denominator
In this comprehensive study of Kitaevs abelian models defined on a graph embedded on a closed orientable surface, we provide complete proofs of the topological ground state degeneracy, the absence of local order parameters, compute the entanglement e
A novel Bethe Ansatz scheme is proposed to calculate physical properties of quantum integrable systems without $U(1)$ symmetry. As an example, the anti-periodic XXZ spin chain, a typical correlated many-body system embedded in a topological manifold,
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of