ترغب بنشر مسار تعليمي؟ اضغط هنا

Innovative Non-parametric Texture Synthesis via Patch Permutations

51   0   0.0 ( 0 )
 نشر من قبل Ryan Webster
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Ryan Webster




اسأل ChatGPT حول البحث

In this work, we present a non-parametric texture synthesis algorithm capable of producing plausible images without copying large tiles of the exemplar. We focus on a simple synthesis algorithm, where we explore two patch match heuristics; the well known Bidirectional Similarity (BS) measure and a heuristic that finds near permutations using the solution of an entropy regularized optimal transport (OT) problem. Innovative synthesis is achieved with a small patch size, where global plausibility relies on the qualities of the match. For OT, less entropic regularization also meant near permutations and more plausible images. We examine the tile maps of the synthesized images, showing that they are indeed novel superpositions of the input and contain few or no verbatim copies. Synthesis results are compared to a statistical method, namely a random convolutional network. We conclude by remarking simple algorithms using only the input image can synthesize textures decently well and call for more modest approaches in future algorithm design.



قيم البحث

اقرأ أيضاً

159 - Li-Yi Wei , Marc Levoy 2014
Search-based texture synthesis algorithms are sensitive to the order in which texture samples are generated; different synthesis orders yield different textures. Unfortunately, most polygon rasterizers and ray tracers do not guarantee the order with which surfaces are sampled. To circumvent this problem, textures are synthesized beforehand at some maximum resolution and rendered using texture mapping. We describe a search-based texture synthesis algorithm in which samples can be generated in arbitrary order, yet the resulting texture remains identical. The key to our algorithm is a pyramidal representation in which each texture sample depends only on a fixed number of neighboring samples at each level of the pyramid. The bottom (coarsest) level of the pyramid consists of a noise image, which is small and predetermined. When a sample is requested by the renderer, all samples on which it depends are generated at once. Using this approach, samples can be generated in any order. To make the algorithm efficient, we propose storing texture samples and their dependents in a pyramidal cache. Although the first few samples are expensive to generate, there is substantial reuse, so subsequent samples cost less. Fortunately, most rendering algorithms exhibit good coherence, so cache reuse is high.
Recently, deep generative adversarial networks for image generation have advanced rapidly; yet, only a small amount of research has focused on generative models for irregular structures, particularly meshes. Nonetheless, mesh generation and synthesis remains a fundamental topic in computer graphics. In this work, we propose a novel framework for synthesizing geometric textures. It learns geometric texture statistics from local neighborhoods (i.e., local triangular patches) of a single reference 3D model. It learns deep features on the faces of the input triangulation, which is used to subdivide and generate offsets across multiple scales, without parameterization of the reference or target mesh. Our network displaces mesh vertices in any direction (i.e., in the normal and tangential direction), enabling synthesis of geometric textures, which cannot be expressed by a simple 2D displacement map. Learning and synthesizing on local geometric patches enables a genus-oblivious framework, facilitating texture transfer between shapes of different genus.
A non-parametric interpretable texture synthesis method, called the NITES method, is proposed in this work. Although automatic synthesis of visually pleasant texture can be achieved by deep neural networks nowadays, the associated generation models a re mathematically intractable and their training demands higher computational cost. NITES offers a new texture synthesis solution to address these shortcomings. NITES is mathematically transparent and efficient in training and inference. The input is a single exemplary texture image. The NITES method crops out patches from the input and analyzes the statistical properties of these texture patches to obtain their joint spatial-spectral representations. Then, the probabilistic distributions of samples in the joint spatial-spectral spaces are characterized. Finally, numerous texture images that are visually similar to the exemplary texture image can be generated automatically. Experimental results are provided to show the superior quality of generated texture images and efficiency of the proposed NITES method in terms of both training and inference time.
Image generation from scene description is a cornerstone technique for the controlled generation, which is beneficial to applications such as content creation and image editing. In this work, we aim to synthesize images from scene description with re trieved patches as reference. We propose a differentiable retrieval module. With the differentiable retrieval module, we can (1) make the entire pipeline end-to-end trainable, enabling the learning of better feature embedding for retrieval; (2) encourage the selection of mutually compatible patches with additional objective functions. We conduct extensive quantitative and qualitative experiments to demonstrate that the proposed method can generate realistic and diverse images, where the retrieved patches are reasonable and mutually compatible.
Existing compression methods typically focus on the removal of signal-level redundancies, while the potential and versatility of decomposing visual data into compact conceptual components still lack further study. To this end, we propose a novel conc eptual compression framework that encodes visual data into compact structure and texture representations, then decodes in a deep synthesis fashion, aiming to achieve better visual reconstruction quality, flexible content manipulation, and potential support for various vision tasks. In particular, we propose to compress images by a dual-layered model consisting of two complementary visual features: 1) structure layer represented by structural maps and 2) texture layer characterized by low-dimensional deep representations. At the encoder side, the structural maps and texture representations are individually extracted and compressed, generating the compact, interpretable, inter-operable bitstreams. During the decoding stage, a hierarchical fusion GAN (HF-GAN) is proposed to learn the synthesis paradigm where the textures are rendered into the decoded structural maps, leading to high-quality reconstruction with remarkable visual realism. Extensive experiments on diverse images have demonstrated the superiority of our framework with lower bitrates, higher reconstruction quality, and increased versatility towards visual analysis and content manipulation tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا