ﻻ يوجد ملخص باللغة العربية
Network pruning can reduce the high computation cost of deep neural network (DNN) models. However, to maintain their accuracies, sparse models often carry randomly-distributed weights, leading to irregular computations. Consequently, sparse models cannot achieve meaningful speedup on commodity hardware (e.g., GPU) built for dense matrix computations. As such, prior works usually modify or design completely new sparsity-optimized architectures for exploiting sparsity. We propose an algorithm-software co-designed pruning method that achieves latency speedups on existing dense architectures. Our work builds upon the insight that the matrix multiplication generally breaks the large matrix into multiple smaller tiles for parallel execution. We propose a tiling-friendly tile-wise sparsity pattern, which maintains a regular pattern at the tile level for efficient execution but allows for irregular, arbitrary pruning at the global scale to maintain the high accuracy. We implement and evaluate the sparsity pattern on GPU tensor core, achieving a 1.95x speedup over the dense model.
Accelerating deep model training and inference is crucial in practice. Existing deep learning frameworks usually concentrate on optimizing training speed and pay fewer attentions to inference-specific optimizations. Actually, model inference differs
As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O per
We consider an extension to the geometric amoebot model that allows amoebots to form so-called emph{circuits}. Given a connected amoebot structure, a circuit is a subgraph formed by the amoebots that permits the instant transmission of signals. We sh
Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed so
Sparsity, which occurs in both scientific applications and Deep Learning (DL) models, has been a key target of optimization within recent ASIC accelerators due to the potential memory and compute savings. These applications use data stored in a varie