ترغب بنشر مسار تعليمي؟ اضغط هنا

CEAZ: Accelerating Parallel I/O via Hardware-Algorithm Co-Design of Efficient and Adaptive Lossy Compression

196   0   0.0 ( 0 )
 نشر من قبل Dingwen Tao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O performance. However, little work has been done for effectively offloading lossy compression onto FPGA-based SmartNICs to reduce the compression overhead. In this paper, we propose a hardware-algorithm co-design of efficient and adaptive lossy compressor for scientific data on FPGAs (called CEAZ) to accelerate parallel I/O. Our contribution is fourfold: (1) We propose an efficient Huffman coding approach that can adaptively update Huffman codewords online based on codewords generated offline (from a variety of representative scientific datasets). (2) We derive a theoretical analysis to support a precise control of compression ratio under an error-bounded compression mode, enabling accurate offline Huffman codewords generation. This also helps us create a fixed-ratio compression mode for consistent throughput. (3) We develop an efficient compression pipeline by adopting cuSZs dual-quantization algorithm to our hardware use case. (4) We evaluate CEAZ on five real-world datasets with both a single FPGA board and 128 nodes from Bridges-2 supercomputer. Experiments show that CEAZ outperforms the second-best FPGA-based lossy compressor by 2X of throughput and 9.6X of compression ratio. It also improves MPI_File_write and MPI_Gather throughputs by up to 25.8X and 24.8X, respectively.

قيم البحث

اقرأ أيضاً

Fast domain propagation of linear constraints has become a crucial component of todays best algorithms and solvers for mixed integer programming and pseudo-boolean optimization to achieve peak solving performance. Irregularities in the form of dynami c algorithmic behaviour, dependency structures, and sparsity patterns in the input data make efficient implementations of domain propagation on GPUs and, more generally, on parallel architectures challenging. This is one of the main reasons why domain propagation in state-of-the-art solvers is single thread only. In this paper, we present a new algorithm for domain propagation which (a) avoids these problems and allows for an efficient implementation on GPUs, and is (b) capable of running propagation rounds entirely on the GPU, without any need for synchronization or communication with the CPU. We present extensive computational results which demonstrate the effectiveness of our approach and show that ample speedups are possible on practically relevant problems: on state-of-the-art GPUs, our geometric mean speed-up for reasonably-large instances is around 10x to 20x and can be as high as 180x on favorably-large instances.
Important workloads, such as machine learning and graph analytics applications, heavily involve sparse linear algebra operations. These operations use sparse matrix compression as an effective means to avoid storing zeros and performing unnecessary c omputation on zero elements. However, compression techniques like Compressed Sparse Row (CSR) that are widely used today introduce significant instruction overhead and expensive pointer-chasing operations to discover the positions of the non-zero elements. In this paper, we identify the discovery of the positions (i.e., indexing) of non-zero elements as a key bottleneck in sparse matrix-based workloads, which greatly reduces the benefits of compression. We propose SMASH, a hardware-software cooperative mechanism that enables highly-efficient indexing and storage of sparse matrices. The key idea of SMASH is to explicitly enable the hardware to recognize and exploit sparsity in data. To this end, we devise a novel software encoding based on a hierarchy of bitmaps. This encoding can be used to efficiently compress any sparse matrix, regardless of the extent and structure of sparsity. At the same time, the bitmap encoding can be directly interpreted by the hardware. We design a lightweight hardware unit, the Bitmap Management Unit (BMU), that buffers and scans the bitmap hierarchy to perform highly-efficient indexing of sparse matrices. SMASH exposes an expressive and rich ISA to communicate with the BMU, which enables its use in accelerating any sparse matrix computation. We demonstrate the benefits of SMASH on four use cases that include sparse matrix kernels and graph analytics applications.
Personalized PageRank (PPR) is a graph algorithm that evaluates the importance of the surrounding nodes from a source node. Widely used in social network related applications such as recommender systems, PPR requires real-time responses (latency) for a better user experience. Existing works either focus on algorithmic optimization for improving precision while neglecting hardware implementations or focus on distributed global graph processing on large-scale systems for improving throughput rather than response time. Optimizing low-latency local PPR algorithm with a tight memory budget on edge devices remains unexplored. In this work, we propose a memory-efficient, low-latency PPR solution, namely MeLoPPR, with largely reduced memory requirement and a flexible trade-off between latency and precision. MeLoPPR is composed of stage decomposition and linear decomposition and exploits the node score sparsity: Through stage and linear decomposition, MeLoPPR breaks the computation on a large graph into a set of smaller sub-graphs, that significantly saves the computation memory; Through sparsity exploitation, MeLoPPR selectively chooses the sub-graphs that contribute the most to the precision to reduce the required computation. In addition, through software/hardware co-design, we propose a hardware implementation on a hybrid CPU and FPGA accelerating platform, that further speeds up the sub-graph computation. We evaluate the proposed MeLoPPR on memory-constrained devices including a personal laptop and Xilinx Kintex-7 KC705 FPGA using six real-world graphs. First, MeLoPPR demonstrates significant memory saving by 1.5x to 13.4x on CPU and 73x to 8699x on FPGA. Second, MeLoPPR allows flexible trade-offs between precision and execution time: when the precision is 80%, the speedup on CPU is up to 15x and up to 707x on FPGA; when the precision is around 90%, the speedup is up to 70x on FPGA.
Extreme-scale cosmological simulations have been widely used by todays researchers and scientists on leadership supercomputers. A new generation of error-bounded lossy compressors has been used in workflows to reduce storage requirements and minimize the impact of throughput limitations while saving large snapshots of high-fidelity data for post-hoc analysis. In this paper, we propose to adaptively provide compression configurations to compute partitions of cosmological simulations with newly designed post-analysis aware rate-quality modeling. The contribution is fourfold: (1) We propose a novel adaptive approach to select feasible error bounds for different partitions, showing the possibility and efficiency of adaptively configuring lossy compression for each partition individually. (2) We build models to estimate the overall loss of post-analysis result due to lossy compression and to estimate compression ratio, based on the property of each partition. (3) We develop an efficient optimization guideline to determine the best-fit configuration of error bounds combination in order to maximize the compression ratio under acceptable post-analysis quality loss. (4) Our approach introduces negligible overheads for feature extraction and error-bound optimization for each partition, enabling post-analysis-aware in situ lossy compression for cosmological simulations. Experiments show that our proposed models are highly accurate and reliable. Our fine-grained adaptive configuration approach improves the compression ratio of up to 73% on the tested datasets with the same post-analysis distortion with only 1% performance overhead.
In this paper, we present a novel multi-objective hardware-aware neural architecture search (NAS) framework, namely HSCoNAS, to automate the design of deep neural networks (DNNs) with high accuracy but low latency upon target hardware. To accomplish this goal, we first propose an effective hardware performance modeling method to approximate the runtime latency of DNNs on target hardware, which will be integrated into HSCoNAS to avoid the tedious on-device measurements. Besides, we propose two novel techniques, i.e., dynamic channel scaling to maximize the accuracy under the specified latency and progressive space shrinking to refine the search space towards target hardware as well as alleviate the search overheads. These two techniques jointly work to allow HSCoNAS to perform fine-grained and efficient explorations. Finally, an evolutionary algorithm (EA) is incorporated to conduct the architecture search. Extensive experiments on ImageNet are conducted upon diverse target hardware, i.e., GPU, CPU, and edge device to demonstrate the superiority of HSCoNAS over recent state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا