ﻻ يوجد ملخص باللغة العربية
Production of scalar particles by a relativistic, semi-transparent mirror in 1+3D Minkowski spacetime based on the Barton-Calogeracos (BC) action is investigated. The corresponding Bogoliubov coefficients are derived for a mirror with arbitrary trajectory. In particular, we apply our derived formula to the gravitational collapse trajectory. In addition, we identify the relation between the particle spectrum and the particle production probability, and we demonstrate the equivalence between our approach and the existing approach in the literature, which is restricted to 1+1D. In short, our treatment extends the study to 1+3D spacetime. Lastly, we offer a third approach for finding the particle spectrum using the S-matrix formalism.
Production of massless scalar particles by a relativistic semitransparent mirror of finite transverse size in (1+3)D flat spacetime is studied. The finite-size effect on the mode function is compared to the conventional scalar diffraction theory in o
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killin
We explicitly calculate the gravitational wave memory effect for classical point particle sources in linearized gravity off of an even dimensional Minkowski background. We show that there is no memory effect in $d>4$ dimensions, in agreement with the
We investigate the relation between the time-ordered vacuum correlation functions for interacting real scalar fields in Minkowski spacetime and in the Rindler wedge. The correlation functions are constructed perturbatively within the in-in formalism,
We obtain the geodesics for the simplest possible stealth defect which has a flat spacetime. We, then, discuss the lensing properties of such a defect, and the corresponding image formation. Similar lensing properties can be expected to hold for curved-spacetime stealth defects.