ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivalence between the in-in perturbation theories for quantum fields in Minkowski spacetime and in the Rindler wedge

45   0   0.0 ( 0 )
 نشر من قبل William C. C. Lima
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the relation between the time-ordered vacuum correlation functions for interacting real scalar fields in Minkowski spacetime and in the Rindler wedge. The correlation functions are constructed perturbatively within the in-in formalism, often employed in calculations in more general spacetimes. We prove to all orders in perturbation theory that the time-ordered vacuum correlation functions can be calculated in the in-in formalism with internal vertices restricted to any Rindler wedge containing the external points. This implies that the Minkowski in-in (or in-out) perturbative expansion of the vacuum correlation functions is reproduced by the Rindler in-in perturbative expansion of these correlators in a thermal state at the Unruh temperature.

قيم البحث

اقرأ أيضاً

336 - Stefan Hollands 2018
We present a proof that quantum Yang-Mills theory can be consistently defined as a renormalized, perturbative quantum field theory on an arbitrary globally hyperbolic curved, Lorentzian spacetime. To this end, we construct the non-commutative algebra of observables, in the sense of formal power series, as well as a space of corresponding quantum states. The algebra contains all gauge invariant, renormalized, interacting quantum field operators (polynomials in the field strength and its derivatives), and all their relations such as commutation relations or operator product expansion. It can be viewed as a deformation quantization of the Poisson algebra of classical Yang-Mills theory equipped with the Peierls bracket. The algebra is constructed as the cohomology of an auxiliary algebra describing a gauge fixed theory with ghosts and anti-fields. A key technical difficulty is to establish a suitable hierarchy of Ward identities at the renormalized level that ensure conservation of the interacting BRST-current, and that the interacting BRST-charge is nilpotent. The algebra of physical interacting field observables is obtained as the cohomology of this charge. As a consequence of our constructions, we can prove that the operator product expansion closes on the space of gauge invariant operators. Similarly, the renormalization group flow is proved not to leave the space of gauge invariant operators.
This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of t he multiverse idea presented in this paper, that is shared by the fields in the standard model coupled to gravity, is different from other notions of a multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper we illustrate these properties for the extended Rindler space, while black hole spacetime and the cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union of the four wedges in (u,v) light-cone coordinates as in Fig.(1). In quantum mechanics, the wavefunction is an analytic function of (u,v) that is sensitive to branch points at the horizons u=0 or v=0, with branch cuts attached to them. The wavefunction is uniquely defined by analyticity on an infinite number of sheets in the cut analytic (u,v) spacetime. This structure is naturally interpreted as an infinite stack of identical Minkowski geometries, or universes, connected to each other by analyticity across branch cuts, such that each sheet represents a different Minkowski universe when (u,v) are analytically continued to the real axis on any sheet. We show in this paper that, in the absence of interactions, information doesnt flow from one Rindler sheet to another. By contrast, for an eternal black hole spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions, analyticity shows how information is lost due to a flow to other universes, enabled by an additional branch point and cut due to the black hole singularity.
Production of scalar particles by a relativistic, semi-transparent mirror in 1+3D Minkowski spacetime based on the Barton-Calogeracos (BC) action is investigated. The corresponding Bogoliubov coefficients are derived for a mirror with arbitrary traje ctory. In particular, we apply our derived formula to the gravitational collapse trajectory. In addition, we identify the relation between the particle spectrum and the particle production probability, and we demonstrate the equivalence between our approach and the existing approach in the literature, which is restricted to 1+1D. In short, our treatment extends the study to 1+3D spacetime. Lastly, we offer a third approach for finding the particle spectrum using the S-matrix formalism.
The Lorentzian distance formula, conjectured several years ago by Parfionov and Zapatrin, has been recently proved by the second author. In this work we focus on the derivation of an equivalent expression in terms of the geometry of 2-spinors by usin g a partly original approach due to the first author. Our calculations clearly show the independence of the algebraic distance formula of the observer.
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration e xtends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner-Nordstrom or Reissner-Nordstrom-deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the Cauchy horizon. It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a final singularity, and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter, $V$, along a radial null geodesic transverse to the Cauchy horizon as $T_{VV} sim C/V^2$ with $C$ independent of the state and $C eq 0$ generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a strong curvature singularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا