ﻻ يوجد ملخص باللغة العربية
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killing vector field in Riemann normal coordinates about the same spacetime point and we derive corrections with respect to the flat spacetime expressions. Thereby, we clarify the origin of the terms proportional to Riemann and Ricci tensors introduced in general hydrodynamic expansion of the stress-energy tensor.
We present a proof that quantum Yang-Mills theory can be consistently defined as a renormalized, perturbative quantum field theory on an arbitrary globally hyperbolic curved, Lorentzian spacetime. To this end, we construct the non-commutative algebra
Hydrodynamics of the non-relativistic compressible fluid in the curved spacetime is derived using the generalized framework of the stochastic variational method (SVM) for continuum medium. The fluid-stress tensor of the resultant equation becomes asy
We extend Derricks theorem to the case of a generic irrotational curved spacetime adopting a strategy similar to the original proof. We show that a static relativistic star made of real scalar fields is never possible regardless of the geometrical pr
The current race in quantum communication -- endeavouring to establish a global quantum network -- must account for special and general relativistic effects. The well-studied general relativistic effects include Shapiro time-delay, gravitational lens
We discuss a new formalism for constructing a non-relativistic (NR) theory in curved background. Named as galilean gauge theory, it is based on gauging the global galilean symmetry. It provides a systematic algorithm for obtaining the covariant curve