ﻻ يوجد ملخص باللغة العربية
The spin of the massive black hole (BH) at the center of the Milky Way, SgrA$^*$, has been poorly constrained so far. We place an upper limit on the spin of SgrA$^*$ based on the spatial distribution of the S-stars, which are arranged in two almost edge-on disks that are located at a position angle approximately $pm 45^circ$ with respect to the Galactic plane, on a milliparsec scale around the Galactic Center. Requiring that the frame-dragging precession has not had enough time to make the S-star orbital angular momentum precess, the spin of the massive BH at the center of the Milky Way can be constrained to $chilesssim 0.1$.
Using 25 years of data from uninterrupted monitoring of stellar orbits in the Galactic Center, we present an update of the main results from this unique data set: A measurement of mass of and distance to SgrA*. Our progress is not only due to the eig
We present the results of deep radio observations with the Australia Telescope Compact Array (ATCA) of the globular cluster NGC 6388. We show that there is no radio source detected (with a r.m.s. noise level of 27 uJy) at the cluster centre of gravit
If ultra-high-energy cosmic rays originate from extragalactic sources, the offsets of their arrival directions from these sources imply an upper limit on the strength of the extragalactic magnetic field. The Pierre Auger Collaboration has recently re
Pulsars, if existing and detectable in the immediate vicinity of the massive black hole (MBH) in the Galactic center (GC), may be used as a superb tool to probe both the environment and the metric of the central MBH. The recent discovery of a magneti
An analysis of negative radiative feedback from resident stars in minihalos is performed. It is found that the most effective mechanism to suppress star formation is provided by infrared photons from resident stars via photo-detachment of ${rm H^-}$.