ﻻ يوجد ملخص باللغة العربية
An analysis of negative radiative feedback from resident stars in minihalos is performed. It is found that the most effective mechanism to suppress star formation is provided by infrared photons from resident stars via photo-detachment of ${rm H^-}$. It is shown that a stringent upper bound on (total stellar mass, metallicity) of ($sim 1000{rm M_odot}$, $-3.3pm 0.2$) in any newly minted atomic cooling halo can be placed, with the actual values possibly significantly lower. This has both important physical ramifications on formation of stars and supermassive black seeds in atomic cooling halos at high redshift, pertaining to processes of low temperature metal cooling, dust formation and fragmentation, and direct consequences on the faint end galaxy luminosity function at high redshift and cosmological reionization. The luminosity function of galaxies at the epoch of reionization may be substantially affected due to the combined effect of a diminished role of minihalos and an enhanced contribution from Pop III stars in atomic cooling halos. Upcoming results on reionization optical depth from Planck High-Frequency Instrument data may provide a significant constraint on and a unique probe of this star formation physical process in minihalos. As a numerical example, in the absence of significant contributions from minihalos with virial masses below $1.5times 10^{8}{rm M_odot}$ the reionization optical depth is expected to be no greater than $0.065$, whereas allowing for minihalos of masses as low as ($10^7{rm M_odot}$, $10^{6.5}{rm M_odot}$) to form stars unconstrained by this self-regulation physical process, the reionization optical depth is expected to exceed $(0.075,0.085)$, respectively.
It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture the mass
We present the results of a numerical study on the effects of metal enrichment and metal cooling on galaxy formation and cosmic star formation (SF) history using cosmological hydrodynamic simulations. We find following differences in the simulation w
Massive early-type galaxies have higher metallicities and higher ratios of $alpha$ elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-an
We have investigated the baryon-mass content in a subsample of 19 clusters of galaxies extracted from the X-ray flux-limited sample HIFLUGCS according to their positions in the sky. For these clusters, we measured total masses and characteristic radi
The first galaxies contain stars born out of gas with little or no metals. The lack of metals is expected to inhibit efficient gas cooling and star formation but this effect has yet to be observed in galaxies with oxygen abundance relative to hydroge