ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Existence of Pulsars in the Vicinity of the Massive Black Hole in the Galactic Center

202   0   0.0 ( 0 )
 نشر من قبل Youjun Lu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fupeng Zhang




اسأل ChatGPT حول البحث

Pulsars, if existing and detectable in the immediate vicinity of the massive black hole (MBH) in the Galactic center (GC), may be used as a superb tool to probe both the environment and the metric of the central MBH. The recent discovery of a magnetized pulsar in the GC suggests that many more pulsars should exist near the MBH. In this paper, we estimate the number and the orbital distribution of pulsars in the vicinity of the MBH in the GC by assuming that the pulsar progenitors, similar to the GC S-stars, were captured to orbits tightly bound to the MBH through the tidal breakup of stellar binaries. We use the current observations on both the GC S-stars and the hypervelocity stars to calibrate the injection rate(s) of and the dynamical model(s) for the stellar binaries. By including the relaxation processes, supernova kicks, and gravitational wave radiation in our simulations, we estimate that ~97-190 (9-14) pulsars may presently orbit the central MBH with semimajor axes <=4000AU (<=1000AU), which is compatible with the current observational constraints on the number of the GC pulsars. The semimajor axis and the pericenter distance of the pulsar closest to the central MBH are probably in the range of ~120-460AU and ~2-230AU, respectively. Future telescopes, such as the SKA, may be able to detect a significant number of pulsars with semimajor axis smaller than a few thousand AU in the GC. Long-term monitoring of these pulsars would be helpful in constraining both the environment and the metric of the central MBH. Our preferred model also results in about ten hyperfast pulsars with velocity >~1500km/s moving away from the Milky Way.



قيم البحث

اقرأ أيضاً

We present new Adaptive Optics (AO) imaging and spectroscopic measurements of Galactic Center source G1 from W. M. Keck Observatory. Our goal is to understand its nature and relationship to G2, which is the first example of a spatially-resolved objec t interacting with the supermassive black hole (SMBH). Both objects have been monitored with AO for the past decade (2003 - 2014) and are comparatively close to the black hole ($a_{rm{min}} sim$200-300 AU) on very eccentric orbits ($e_{rm{G1}}sim$0.99; $e_{rm{G2}}sim$0.96). While G2 has been tracked before and during periapse passage ($T_{0} sim$ 2014.2), G1 has been followed since soon after emerging from periapse ($T_{0} sim$ 2001.3). Our observations of G1 double the previously reported observational time baseline, which improves its orbital parameter determinations. G1s orbital trajectory appears to be in the same plane as that of G2, but with a significantly different argument of periapse ($Deltaomega$ = 21$pm$4 degrees). This suggests that G1 is an independent object and not part of a gas stream containing G2 as has been proposed. Furthermore, we show for the first time that: (1) G1 is extended in the epochs closest to periapse along the direction of orbital motion and (2) G1 becomes significantly smaller over time, (450 AU in 2004 to less than 170 AU in 2009). Based on these observations, G1 appears to be the second example of an object tidally interacting with a SMBH. G1s existence 14 years after periapse, along with its compactness in epochs further from the time of periapse, suggest that this source is stellar in nature.
104 - Z. Paragi , S. Frey , P. Kaaret 2014
Recently Nyland et al. (2012) argued that the radio emission observed in the center of the dwarf galaxy NGC 404 originates in a low-luminosity active galactic nucleus (LLAGN) powered by a massive black hole ($Msim<10^6$ M$_{odot}$). High-resolution r adio detections of MBHs are rare. Here we present sensitive, contemporaneous Chandra X-ray, and very long baseline interferometry (VLBI) radio observations with the European VLBI Network (EVN). The source is detected in the X-rays, and shows no long-term variability. If the hard X-ray source is powered by accretion, the apparent low accretion efficiency would be consistent with a black hole in the hard state. Hard state black holes are known to show radio emission compact on the milliarcsecond scales. However, the central region of NGC 404 is resolved out on 10 milliarcsecond (0.15-1.5 pc) scales. Our VLBI non-detection of a compact, partially self-absorbed radio core in NGC 404 implies that either the black hole mass is smaller than $3^{+5}_{-2}times10^5$ M$_{odot}$, or the source does not follow the fundamental plane of black hole activity relation. An alternative explanation is that the central black hole is not in the hard state. The radio emission observed on arcsecond (tens of pc) scales may originate in nuclear star formation or extended emission due to AGN activity, although the latter would not be typical considering the structural properties of low-ionization nuclear emission-line region galaxies (LINERs) with confirmed nuclear activity.
The Galactic Center is an excellent laboratory for studying phenomena and physical processes that may be occurring in many other galactic nuclei. The Center of our Milky Way is by far the closest galactic nucleus, and observations with exquisite reso lution and sensitivity cover 18 orders of magnitude in energy of electromagnetic radiation. Theoretical simulations have become increasingly more powerful in explaining these measurements. This review summarizes the recent progress in observational and theoretical work on the central parsec, with a strong emphasis on the current empirical evidence for a central massive black hole and on the processes in the surrounding dense nuclear star cluster. We present the current evidence, from the analysis of the orbits of more than two dozen stars and from the measurements of the size and motion of the central compact radio source, Sgr A*, that this radio source must be a massive black hole of about 4.4 times 1e6 Msun, beyond any reasonable doubt. We report what is known about the structure and evolution of the dense nuclear star cluster surrounding this black hole, including the astounding fact that stars have been forming in the vicinity of Sgr A* recently, apparently with a top-heavy stellar mass function. We discuss a dense concentration of fainter stars centered in the immediate vicinity of the massive black hole, three of which have orbital peri-bothroi of less than one light day. This S-star cluster appears to consist mainly of young early-type stars, in contrast to the predicted properties of an equilibrium stellar cusp around a black hole. This constitutes a remarkable and presently not fully understood paradox of youth. We also summarize what is known about the emission properties of the accreting gas onto Sgr A* and how this emission is beginning to delineate the physical properties in the hot accretion zone around the event horizon.
The origin, structure and evolution of the small gas cloud, G2, is investigated, that is on an orbit almost straight into the Galactic central supermassive black hole (SMBH). G2 is a sensitive probe of the hot accretion zone of Sgr A*, requiring gas temperatures and densities that agree well with models of captured shock-heated stellar winds. Its mass is equal to the critical mass below which cold clumps would be destroyed quickly by evaporation. Its mass is also constrained by the fact that at apocenter its sound crossing timescale was equal to its orbital timescale. Our numerical simulations show that the observed structure and evolution of G2 can be well reproduced if it formed in pressure equilibrium with the surrounding in 1995 at a distance from the SMBH of 7.6e16 cm. If the cloud would have formed at apocenter in the clockwise stellar disk as expected from its orbit, it would be torn into a very elongated spaghetti-like filament by 2011 which is not observed. This problem can be solved if G2 is the head of a larger, shell-like structure that formed at apocenter. Our numerical simulations show that this scenario explains not only G2s observed kinematical and geometrical properties but also the Br_gamma observations of a low surface brightness gas tail that trails the cloud. In 2013, while passing the SMBH G2 will break up into a string of droplets that within the next 30 years mix with the surrounding hot gas and trigger cycles of AGN activity.
The hierarchical nature of galaxy formation suggests that a supermassive black hole binary could exist in our galactic center. We propose a new approach to constraining the possible orbital configuration of such a binary companion to the galactic cen ter black hole Sgr A* through the measurement of stellar orbits. Focusing on the star S0-2, we show that requiring its orbital stability in the presence of a companion to Sgr A* yields stringent constraints on the possible configurations of such a companion. Furthermore, we show that precise measurements of {it time variations} in the orbital parameters of S0-2 could yield stronger constraints. Using existing data on S0-2 we derive upper limits on the binary black hole separation as a function of the companion mass. For the case of a circular orbit, we can rule out a 10^5 M_sun companion with a semimajor axis greater than 170 astronomical units or 0.8 mpc. This is already more stringent than bounds obtained from studies of the proper motion of Sgr A*. Including other stars orbiting the galactic center should yield stronger constraints that could help uncover the presence of a companion to Sgr A*. We show that a companion can also affect the accretion process, resulting in a variability which may be consistent with the measured infrared flaring timescales and amplitudes. Finally, if such a companion exists, it will emit gravitational wave radiation, potentially detectable with LISA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا