ﻻ يوجد ملخص باللغة العربية
We study a two-dimensional low-dissipation dynamical system with a control parameter that is swept linearly in time across a transcritical bifurcation. We investigate the relaxation time of a perturbation applied to a variable of the system and we show that critical slowing down may occur at a parameter value well above the bifurcation point. We test experimentally the occurrence of critical slowing down by applying a perturbation to the accessible control parameter and we find that this perturbation leaves the system behavior unaltered, thus providing no useful information on the occurrence of critical slowing down. The theoretical analysis reveals the reasons why these tests fail in predicting an incoming bifurcation.
We consider stochastic electro-mechanical dynamics of an overdamped power system in the vicinity of the saddle-node bifurcation associated with the loss of global stability such as voltage collapse or phase angle instability. Fluctuations of the syst
We report a comprehensive study of the complex AC conductance of amorphous superconducting InO$_x$ thin films. Using a novel broadband microwave `Corbino spectrometer we measure the explicit frequency dependency of the complex conductance and the pha
We review our recent work on ellipsoidal M2-brane solutions in the large-N limit of the BMN matrix model. These bosonic finite-energy membranes live inside SO(3)xSO(6) symmetric plane-wave spacetimes and correspond to local extrema of the energy func
We investigate the critical slowing down of the topological modes using local updating algorithms in lattice 2-d CP^(N-1) models. We show that the topological modes experience a critical slowing down that is much more severe than the one of the quasi
We investigate the response of a photonic gas interacting with a reservoir of pumped dye-molecules to quenches in the pump power. In addition to the expected dramatic critical slowing down of the equilibration time around phase transitions we find ex