ﻻ يوجد ملخص باللغة العربية
We review our recent work on ellipsoidal M2-brane solutions in the large-N limit of the BMN matrix model. These bosonic finite-energy membranes live inside SO(3)xSO(6) symmetric plane-wave spacetimes and correspond to local extrema of the energy functional. They are static in SO(3) and stationary in SO(6). Chaos appears at the level of radial stability analysis through the explicitly derived spectrum of eigenvalues. The angular perturbation analysis is suggestive of the presence of weak turbulence instabilities that propagate from low to high orders in perturbation theory.
In the quest for mathematical foundations of M-theory, the Hypothesis H that fluxes are quantized in Cohomotopy theory, implies, on flat but possibly singular spacetimes, that M-brane charges locally organize into equivariant homotopy groups of spher
We show how a recently proposed large $N$ duality in the context of type IIA strings with ${cal N}=1$ supersymmetry in 4 dimensions can be derived from purely geometric considerations by embedding type IIA strings in M-theory. The phase structure of
We study a two-dimensional low-dissipation dynamical system with a control parameter that is swept linearly in time across a transcritical bifurcation. We investigate the relaxation time of a perturbation applied to a variable of the system and we sh
We study the orbits in a Manko-Novikov type metric (MN) which is a perturbed Kerr metric. There are periodic, quasi-periodic, and chaotic orbits, which are found in configuration space and on a surface of section for various values of the energy E an
It is shown that the previously noticed internal dynamical $SO(D-1)$ symmetry arXiv:1003.5189 for relativistic M-branes moving in $D$-dimensional space-time is naturally realized in the (extended by powers of $frac{1}{p_+}$) enveloping algebra of the Poincare algebra.