ﻻ يوجد ملخص باللغة العربية
We consider stochastic electro-mechanical dynamics of an overdamped power system in the vicinity of the saddle-node bifurcation associated with the loss of global stability such as voltage collapse or phase angle instability. Fluctuations of the system state vector are driven by random variations of loads and intermittent renewable generation. In the vicinity of collapse the power system experiences so-called phenomenon of critical slowing-down characterized by slowing and simultaneous amplification of the system state vector fluctuations. In generic case of a co-dimension 1 bifurcation corresponding to the threshold of instability it is possible to extract a single mode of the system state vector responsible for this phenomenon. We characterize stochastic fluctuations of the system state vector using the formal perturbative expansion over the lowest (real) eigenvalue of the system power flow Jacobian and verify the resulting expressions for correlation functions of the state vector by direct numerical simulations. We conclude that the onset of critical slowing-down is a good marker of approach to the threshold of global instability. It can be straightforwardly detected from the analysis of single-node autostructure and autocorrelation functions of system state variables and thus does not require full observability of the grid.
We study a two-dimensional low-dissipation dynamical system with a control parameter that is swept linearly in time across a transcritical bifurcation. We investigate the relaxation time of a perturbation applied to a variable of the system and we sh
We investigate the response of a photonic gas interacting with a reservoir of pumped dye-molecules to quenches in the pump power. In addition to the expected dramatic critical slowing down of the equilibration time around phase transitions we find ex
We investigate the critical slowing down of the topological modes using local updating algorithms in lattice 2-d CP^(N-1) models. We show that the topological modes experience a critical slowing down that is much more severe than the one of the quasi
Near a bifurcation point, the response time of a system is expected to diverge due to the phenomenon of critical slowing down. We investigate critical slowing down in well-mixed stochastic models of biochemical feedback by exploiting a mapping to the
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, bu