ترغب بنشر مسار تعليمي؟ اضغط هنا

A multiconfigurational study of the negatively charged nitrogen-vacancy center in diamond

76   0   0.0 ( 0 )
 نشر من قبل Churna Bhandari
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications. Due to the spatial localization of the defect states, these deep defects can be considered as artificial atoms/molecules in a solid state matrix. Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers and correctly predict properties that single-particle treatments fail to obtain. We choose the negatively charged nitrogen-vacancy (NV$^-$) center in diamond as the prototype defect to study with these techniques due to its importance for quantum information applications and because its properties are well-known, which makes it an ideal benchmark system. By properly accounting for electron correlations and including spin-orbit coupling and dipolar spin-spin coupling in the quantum chemistry calculations, for the NV$^-$ center in diamond clusters, we are able to: (i) show the correct splitting of the ground (first-excited) triplet state into two levels (four levels), (ii) calculate zero-field splitting values of the ground and excited triplet states, in good agreement with experiment, and (iii) calculate the energy differences between ground and exited spin-triplet and spin-singlet states, as well as their ordering, which are also found to be in good agreement with recent experimental data. The numerical procedure we have developed is general and it can screen other color centers whose properties are not well known but promising for applications.

قيم البحث

اقرأ أيضاً

The negatively-charged silicon-vacancy (SiV$^-$) center in diamond is a promising single photon source for quantum communications and information processing. However, the centers implementation in such quantum technologies is hindered by contention s urrounding its fundamental properties. Here we present optical polarization measurements of single centers in bulk diamond that resolve this state of contention and establish that the center has a $langle111rangle$ aligned split-vacancy structure with $D_{3d}$ symmetry. Furthermore, we identify an additional electronic level and evidence for the presence of dynamic Jahn-Teller effects in the centers 738 nm optical resonance.
The recently discovered negatively charged tin-vacancy centre in diamond is a promising candidate for applications in quantum information processing (QIP). We here present a detailed spectroscopic study encompassing single photon emission and polaris ation properties, the temperature dependence of emission spectra as well as a detailed analysis of the phonon sideband and Debye-Waller factor. Using photoluminescence excitation spectroscopy (PLE) we probe an energetically higher lying excited state and prove fully lifetime limited linewidths of single emitters at cryogenic temperatures. For these emitters we also investigate the stability of the charge state under resonant excitation. These results provide a detailed insight into the spectroscopic properties of the $text{SnV}^-$ centre and lay the foundation for further studies regarding its suitability in QIP.
The conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers is demonstrated for centers created by ion implantation and annealing in high-purity diamond. Conversion occurs with surface exposure to an oxygen atmos phere at 465 C. The spectral properties of the charge-converted centers are investigated. Charge state control of nitrogen-vacancy centers close to the diamond surface is an important step toward the integration of these centers into devices for quantum information and magnetic sensing applications.
The nitrogen-vacancy (NV) center is a well utilized system for quantum technology, in particular quantum sensing and microscopy. Fully employing the NV centers capabilities for metrology requires a strong understanding of the behavior of the NV cente r with respect to changing temperature. Here, we probe the NV electronic spin density as the surrounding crystal temperature changes from 10 K to 700 K by examining its $^{13}$C hyperfine interactions. These results are corroborated with textit{ab initio} calculations and demonstrate that the change in hyperfine interaction is small and dominated by a change in the hybridization of the orbitals constituting the spin density. Thus indicating that the defect and local crystal geometry is returning towards an undistorted structure at higher temperature.
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV centers spin state typically require averaging over many cycles to overcome noise. Here, we review several approaches to improve the readout performance and highlight future avenues of research that could enable single-shot electron-spin readout at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا