ﻻ يوجد ملخص باللغة العربية
In this study, we focus on the question of stability of NISQ devices. The parameters that define the device stability profile are motivated by the work of DiVincenzo where the requirements for physical implementation of quantum computing are discussed. We develop the metrics and theoretical framework to quantify the DiVincenzo requirements and study the stability of those key metrics. The basis of our assessment is histogram similarity (in time and space). For identical experiments, devices which produce reproducible histograms in time, and similar histograms in space, are considered more reliable. To investigate such reliability concerns robustly, we propose a moment-based distance (MBD) metric. We illustrate our methodology using data collected from IBMs Yorktown device. Two types of assessments are discussed: spatial stability and temporal stability.
Noisy, intermediate-scale quantum (NISQ) computing devices offer opportunities to test the principles of quantum computing but are prone to errors arising from various sources of noise. Fluctuations in the noise itself lead to unstable devices that u
In the era of noisy intermediate-scale quantum (NISQ), executing quantum algorithms on actual quantum devices faces unique challenges. One such challenge is that quantum devices in this era have restricted connectivity: quantum gates are allowed to a
Variational Quantum Eigensolvers (VQEs) have recently attracted considerable attention. Yet, in practice, they still suffer from the efforts for estimating cost function gradients for large parameter sets or resource-demanding reinforcement strategie
Quantum machine learning is one of the most promising applications of quantum computing in the Noisy Intermediate-Scale Quantum(NISQ) era. Here we propose a quantum convolutional neural network(QCNN) inspired by convolutional neural networks(CNN), wh
The analogy between quantum chemistry and light-front quantum field theory, first noted by Kenneth G. Wilson, serves as motivation to develop light-front quantum simulation of quantum field theory. We demonstrate how calculations of hadron structure