ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating Hadronic Physics on NISQ devices using Basis Light-Front Quantization

69   0   0.0 ( 0 )
 نشر من قبل Michael Kreshchuk
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The analogy between quantum chemistry and light-front quantum field theory, first noted by Kenneth G. Wilson, serves as motivation to develop light-front quantum simulation of quantum field theory. We demonstrate how calculations of hadron structure can be performed on Noisy Intermediate-Scale Quantum devices within the Basis Light-Front Quantization framework. We calculate the light-front wave functions of pions using an effective light-front Hamiltonian in a basis representation on a current quantum processor. We use the Variational Quantum Eigensolver to find the ground state energy and wave function, which is subsequently used to calculate pion mass radius, decay constant, elastic form factor, and charge radius.



قيم البحث

اقرأ أيضاً

We produce the light-front wave functions (LFWFs) of the nucleon from a basis light-front ap- proach in the leading Fock sector representation. We solve for the mass eigenstates from a light-front effective Hamiltonian, which includes a confining pot ential adopted from light-front holography in the transverse direction, a longitudinal confinement, and a one-gluon exchange interaction with fixed coupling. We then employ the LFWFs to obtain the electromagnetic and axial form factors, the par- ton distribution functions (PDFs) and the generalized parton distribution functions for the nucleon. The electromagnetic and axial form factors of the proton agree with the experimental data, whereas the neutron form factors deviate somewhat from the experiments in the low momentum transfer region. The unpolarized, the helicity, and the transversity valence quark PDFs, after QCD scale evolution, are fairly consistent with the global fits to the data at the relevant experimental scales. The helicity asymmetry for the down quark also agrees well with the measurements, however, the asymmetry for the up quark shows a deviation from the data, especially in the small x region. We also find that the tensor charge agrees well with the extracted data and the lattice QCD predictions, while the axial charge is somewhat outside the experimental error bar. The electromagnetic radii of the proton, the magnetic radius of the neutron, and the axial radius are in excellent agreement with the measurements, while the neutron charge radius deviates from experiment.
210 - Xingbo Zhao 2014
Basis Light-front Quantization has been developed as a first-principles nonperturbative approach to quantum field theory. In this article we report our recent progress on the applications to the single electron and the positronium system in QED. We f ocus on the renormalization procedure in this method.
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation and demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. Specifically, we app ly the Variational Quantum Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the Basis Light-Front Quantization framework. As a demonstration, we calculate the mass, mass radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBMQ Vigo chip. We consider two implementations based on different encodings of physical states, and propose a development that may lead to quantum advantage. This is the first time that the light-front approach to quantum field theory has been used to enable simulation of a real physical system on a quantum computer.
Basis Light-front Quantization (BLFQ) is a nonperturbative approach to quantum field theory. In this paper, we report our recent progress in applying BLFQ to the positronium system in QED and to the meson and the baryon system in QCD. We present prel iminary results on the mass spectrum, light-front wave functions and other observables of these systems, where one dynamical gauge boson is retained for the positronium and meson systems.
We obtain the light-front wavefunctions for the nucleon in the valence quark Fock space from an effective Hamiltonian, which includes the transverse and longitudinal confinement and the one-gluon exchange interaction with fixed coupling. The wavefunc tions are generated by solving the eigenvalue equation in a basis light-front quantization. Fitting the model parameters, the wavefunctions lead to good simultaneous description of electromagnetic form factors, radii, and parton distribution functions for the proton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا