ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of noisy quantum computing devices

92   0   0.0 ( 0 )
 نشر من قبل Samudra Dasgupta
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Noisy, intermediate-scale quantum (NISQ) computing devices offer opportunities to test the principles of quantum computing but are prone to errors arising from various sources of noise. Fluctuations in the noise itself lead to unstable devices that undermine the reproducibility of NISQ results. Here we characterize the reliability of NISQ devices by quantifying the stability of essential performance metrics. Using the Hellinger distance, we quantify the similarity between experimental characterizations of several NISQ devices by comparing gate fidelities, duty cycles, and register addressability across temporal and spatial scales. Our observations collected over 22 months reveal large fluctuations in each metric that underscore the limited scales on which current NISQ devices may be considered reliable.

قيم البحث

اقرأ أيضاً

In this study, we focus on the question of stability of NISQ devices. The parameters that define the device stability profile are motivated by the work of DiVincenzo where the requirements for physical implementation of quantum computing are discusse d. We develop the metrics and theoretical framework to quantify the DiVincenzo requirements and study the stability of those key metrics. The basis of our assessment is histogram similarity (in time and space). For identical experiments, devices which produce reproducible histograms in time, and similar histograms in space, are considered more reliable. To investigate such reliability concerns robustly, we propose a moment-based distance (MBD) metric. We illustrate our methodology using data collected from IBMs Yorktown device. Two types of assessments are discussed: spatial stability and temporal stability.
181 - Gushu Li , Yufei Ding , Yuan Xie 2019
To bridge the gap between limited hardware access and the huge demand for experiments for Noisy Intermediate-Scale Quantum (NISQ) computing system study, a simulator which can capture the modeling of both the quantum processor and its classical contr ol system to realize early-stage evaluation and design space exploration, is naturally invoked but still missing. This paper presents SANQ, a Simulation framework for Architecting NISQ computing system. SANQ consists of two components, 1) an optimized noisy quantum computing (QC) simulator with flexible error modeling accelerated by eliminating redundant computation, and 2) an architectural simulation infrastructure to construct behavior models for evaluating the control systems. SANQ is validated with existing NISQ quantum processor and control systems to ensure simulation accuracy. It can capture the variance on the QC device and simulate the timing behavior precisely (<1% and 10% error for various real control systems). Several potential applications are proposed to show that SANQ could benefit the future design of NISQ compiler, architecture, etc.
We present a synthesis framework to map logic networks into quantum circuits for quantum computing. The synthesis framework is based on LUT networks (lookup-table networks), which play a key role in conventional logic synthesis. Establishing a connec tion between LUTs in a LUT network and reversible single-target gates in a reversible network allows us to bridge conventional logic synthesis with logic synthesis for quantum computing, despite several fundamental differences. We call our synthesis framework LUT-based Hierarchical Reversible Logic Synthesis (LHRS). Input to LHRS is a classical logic network; output is a quantum network (realized in terms of Clifford+$T$ gates). The framework offers to trade-off the number of qubits for the number of quantum gates. In a first step, an initial network is derived that only consists of single-target gates and already completely determines the number of qubits in the final quantum network. Different methods are then used to map each single-target gate into Clifford+$T$ gates, while aiming at optimally using available resources. We demonstrate the effectiveness of our method in automatically synthesizing IEEE compliant floating point networks up to double precision. As many quantum algorithms target scientific simulation applications, they can make rich use of floating point arithmetic components. But due to the lack of quantum circuit descriptions for those components, it can be difficult to find a realistic cost estimation for the algorithms. Our synthesized benchmarks provide cost estimates that allow quantum algorithm designers to provide the first complete cost estimates for a host of quantum algorithms. Thus, the benchmarks and, more generally, the LHRS framework are an essential step towards the goal of understanding which quantum algorithms will be practical in the first generations of quantum computers.
The Quantum Internet is envisioned as the final stage of the quantum revolution, opening fundamentally new communications and computing capabilities, including the distributed quantum computing. But the Quantum Internet is governed by the laws of qua ntum mechanics. Phenomena with no counterpart in classical networks, such as no-cloning, quantum measurement, entanglement and teleporting, impose very challenging constraints for the network design. Specifically, classical network functionalities, ranging from error-control mechanisms to overhead-control strategies, are based on the assumption that classical information can be safely read and copied. But this assumption does not hold in the Quantum Internet. As a consequence, the design of the Quantum Internet requires a major network-paradigm shift to harness the quantum mechanics specificities. The goal of this work is to shed light on the challenges and the open problems of the Quantum Internet design. To this aim, we first introduce some basic knowledge of quantum mechanics, needed to understand the differences between a classical and a quantum network. Then, we introduce quantum teleportation as the key strategy for transmitting quantum information without physically transferring the particle that stores the quantum information or violating the principles of the quantum mechanics. Finally, the key research challenges to design quantum communication networks are described.
Crosstalk is a major source of noise in Noisy Intermediate-Scale Quantum (NISQ) systems and is a fundamental challenge for hardware design. When multiple instructions are executed in parallel, crosstalk between the instructions can corrupt the quantu m state and lead to incorrect program execution. Our goal is to mitigate the application impact of crosstalk noise through software techniques. This requires (i) accurate characterization of hardware crosstalk, and (ii) intelligent instruction scheduling to serialize the affected operations. Since crosstalk characterization is computationally expensive, we develop optimizations which reduce the characterization overhead. On three 20-qubit IBMQ systems, we demonstrate two orders of magnitude reduction in characterization time (compute time on the QC device) compared to all-pairs crosstalk measurements. Informed by these characterization, we develop a scheduler that judiciously serializes high crosstalk instructions balancing the need to mitigate crosstalk and exponential decoherence errors from serialization. On real-system runs on three IBMQ systems, our scheduler improves the error rate of application circuits by up to 5.6x, compared to the IBM instruction scheduler and offers near-optimal crosstalk mitigation in practice. In a broader picture, the difficulty of mitigating crosstalk has recently driven QC vendors to move towards sparser qubit connectivity or disabling nearby operations entirely in hardware, which can be detrimental to performance. Our work makes the case for software mitigation of crosstalk errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا