ﻻ يوجد ملخص باللغة العربية
An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the queue number of $G$. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph $G$ has queue number $1$ and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of $G$. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary $h$.
In this article, we consider a collection of geometric problems involving points colored by two colors (red and blue), referred to as bichromatic problems. The motivation behind studying these problems is two fold; (i) these problems appear naturally
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwa
Given $n$ points in a $d$ dimensional Euclidean space, the Minimum Enclosing Ball (MEB) problem is to find the ball with the smallest radius which contains all $n$ points. We give a $O(ndQcal/sqrt{epsilon})$ approximation algorithm for producing an e
In the Euclidean TSP with neighborhoods (TSPN), we are given a collection of n regions (neighborhoods) and we seek a shortest tour that visits each region. As a generalization of the classical Euclidean TSP, TSPN is also NP-hard. In this paper, we pr
Recent years have witnessed a tremendous growth using topological summaries, especially the persistence diagrams (encoding the so-called persistent homology) for analyzing complex shapes. Intuitively, persistent homology maps a potentially complex in