ﻻ يوجد ملخص باللغة العربية
In the Euclidean TSP with neighborhoods (TSPN), we are given a collection of n regions (neighborhoods) and we seek a shortest tour that visits each region. As a generalization of the classical Euclidean TSP, TSPN is also NP-hard. In this paper, we present new approximation results for the TSPN, including (1) a constant-factor approximation algorithm for the case of arbitrary connected neighborhoods having comparable diameters; and (2) a PTAS for the important special case of disjoint unit disk neighborhoods (or nearly disjoint, nearly-unit disks). Our methods also yield improved approximation ratios for various special classes of neighborhoods, which have previously been studied. Further, we give a linear-time O(1)-approximation algorithm for the case of neighborhoods that are (infinite) straight lines.
The Euclidean TSP with neighborhoods (TSPN) problem seeks a shortest tour that visits a given collection of $n$ regions ({em neighborhoods}). We present the first polynomial-time approximation scheme for TSPN for a set of regions given by arbitrary d
Given two sets $S$ and $T$ of points in the plane, of total size $n$, a {many-to-many} matching between $S$ and $T$ is a set of pairs $(p,q)$ such that $pin S$, $qin T$ and for each $rin Scup T$, $r$ appears in at least one such pair. The {cost of a
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwa
Given $n$ points in a $d$ dimensional Euclidean space, the Minimum Enclosing Ball (MEB) problem is to find the ball with the smallest radius which contains all $n$ points. We give a $O(ndQcal/sqrt{epsilon})$ approximation algorithm for producing an e
Recent years have witnessed a tremendous growth using topological summaries, especially the persistence diagrams (encoding the so-called persistent homology) for analyzing complex shapes. Intuitively, persistent homology maps a potentially complex in