ﻻ يوجد ملخص باللغة العربية
In this article, we consider a collection of geometric problems involving points colored by two colors (red and blue), referred to as bichromatic problems. The motivation behind studying these problems is two fold; (i) these problems appear naturally and frequently in the fields like Machine learning, Data mining, and so on, and (ii) we are interested in extending the algorithms and techniques for single point set (monochromatic) problems to bichromatic case. For all the problems considered in this paper, we design low polynomial time exact algorithms. These algorithms are based on novel techniques which might be of independent interest.
Given a set $P$ of $n$ points and a set $S$ of $m$ weighted disks in the plane, the disk coverage problem asks for a subset of disks of minimum total weight that cover all points of $P$. The problem is NP-hard. In this paper, we consider a line-const
We study four classical graph problems -- Hamiltonian path, Traveling salesman, Minimum spanning tree, and Minimum perfect matching on geometric graphs induced by bichromatic (red and blue) points. These problems have been widely studied for points i
A polyomino is a polygonal region with axis parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container $P$. We give two polyn
We study the problem of stochastic combinatorial pure exploration (CPE), where an agent sequentially pulls a set of single arms (a.k.a. a super arm) and tries to find the best super arm. Among a variety of problem settings of the CPE, we focus on the
An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the que