ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial Time Algorithms for Bichromatic Problems

136   0   0.0 ( 0 )
 نشر من قبل Sayan Bandyapadhyay
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we consider a collection of geometric problems involving points colored by two colors (red and blue), referred to as bichromatic problems. The motivation behind studying these problems is two fold; (i) these problems appear naturally and frequently in the fields like Machine learning, Data mining, and so on, and (ii) we are interested in extending the algorithms and techniques for single point set (monochromatic) problems to bichromatic case. For all the problems considered in this paper, we design low polynomial time exact algorithms. These algorithms are based on novel techniques which might be of independent interest.



قيم البحث

اقرأ أيضاً

Given a set $P$ of $n$ points and a set $S$ of $m$ weighted disks in the plane, the disk coverage problem asks for a subset of disks of minimum total weight that cover all points of $P$. The problem is NP-hard. In this paper, we consider a line-const rained version in which all disks are centered on a line $L$ (while points of $P$ can be anywhere in the plane). We present an $O((m+n)log(m+n)+kappalog m)$ time algorithm for the problem, where $kappa$ is the number of pairs of disks that intersect. Alternatively, we can also solve the problem in $O(nmlog(m+n))$ time. For the unit-disk case where all disks have the same radius, the running time can be reduced to $O((n+m)log(m+n))$. In addition, we solve in $O((m+n)log(m+n))$ time the $L_{infty}$ and $L_1$ cases of the problem, in which the disks are squares and diamonds, respectively. As a by-product, the 1D version of the problem where all points of $P$ are on $L$ and the disks are line segments on $L$ is also solved in $O((m+n)log(m+n))$ time. We also show that the problem has an $Omega((m+n)log (m+n))$ time lower bound even for the 1D case. We further demonstrate that our techniques can also be used to solve other geometric coverage problems. For example, given in the plane a set $P$ of $n$ points and a set $S$ of $n$ weighted half-planes, we solve in $O(n^4log n)$ time the problem of finding a subset of half-planes to cover $P$ so that their total weight is minimized. This improves the previous best algorithm of $O(n^5)$ time by almost a linear factor. If all half-planes are lower ones, then our algorithm runs in $O(n^2log n)$ time, which improves the previous best algorithm of $O(n^4)$ time by almost a quadratic factor.
We study four classical graph problems -- Hamiltonian path, Traveling salesman, Minimum spanning tree, and Minimum perfect matching on geometric graphs induced by bichromatic (red and blue) points. These problems have been widely studied for points i n the Euclidean plane, and many of them are NP-hard. In this work, we consider these problems in two restricted settings: (i) collinear points and (ii) equidistant points on a circle. We show that almost all of these problems can be solved in linear time in these constrained, yet non-trivial settings.
A polyomino is a polygonal region with axis parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container $P$. We give two polyn omial time algorithms, one for deciding if $P$ can be tiled with $ktimes k$ squares for any fixed $k$ which can be part of the input (that is, deciding if $P$ is the union of a set of non-overlapping $ktimes k$ squares) and one for packing $P$ with a maximum number of non-overlapping and axis-parallel $2times 1$ dominos, allowing rotations by $90^circ$. As packing is more general than tiling, the latter algorithm can also be used to decide if $P$ can be tiled by $2times 1$ dominos. These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of $2times 2$ squares is known to be NP-Hard [J. Algorithms 1990]. For our three problems there are known pseudo-polynomial time algorithms, that is, algorithms with running times polynomial in the area of $P$. However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial time algorithms for the problems. Concretely, we give a simple $O(nlog n)$ algorithm for tiling with squares, and a more involved $O(n^3,text{polylog}, n)$ algorithm for packing and tiling with dominos, where $n$ is the number of corners of $P$.
We study the problem of stochastic combinatorial pure exploration (CPE), where an agent sequentially pulls a set of single arms (a.k.a. a super arm) and tries to find the best super arm. Among a variety of problem settings of the CPE, we focus on the full-bandit setting, where we cannot observe the reward of each single arm, but only the sum of the rewards. Although we can regard the CPE with full-bandit feedback as a special case of pure exploration in linear bandits, an approach based on linear bandits is not computationally feasible since the number of super arms may be exponential. In this paper, we first propose a polynomial-time bandit algorithm for the CPE under general combinatorial constraints and provide an upper bound of the sample complexity. Second, we design an approximation algorithm for the 0-1 quadratic maximization problem, which arises in many bandit algorithms with confidence ellipsoids. Based on our approximation algorithm, we propose novel bandit algorithms for the top-k selection problem, and prove that our algorithms run in polynomial time. Finally, we conduct experiments on synthetic and real-world datasets, and confirm the validity of our theoretical analysis in terms of both the computation time and the sample complexity.
An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the que ue number of $G$. We present two fixed-parameter tractable algorithms that exploit structural properties of graphs to compute optimal queue layouts. As our first result, we show that deciding whether a graph $G$ has queue number $1$ and computing a corresponding layout is fixed-parameter tractable when parameterized by the treedepth of $G$. Our second result then uses a more restrictive parameter, the vertex cover number, to solve the problem for arbitrary $h$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا