ﻻ يوجد ملخص باللغة العربية
We study the strong structural controllability (SSC) of diffusively coupled networks, where the external control inputs are injected to only some nodes, namely the leaders. For such systems, one measure of controllability is the dimension of strong structurally controllable subspace, which is equal to the smallest possible rank of controllability matrix under admissible (positive) coupling weights. In this paper, we compare two tight lower bounds on the dimension of strong structurally controllable subspace: one based on the distances of followers to leaders, and the other based on the graph coloring process known as zero forcing. We show that the distance-based lower bound is usually better than the zero-forcing-based bound when the leaders do not constitute a zero-forcing set. On the other hand, we also show that any set of leaders that can be shown to achieve complete SSC via the distance-based bound is necessarily a zero-forcing set. These results indicate that while the zero-forcing based approach may be preferable when the focus is only on verifying complete SSC, the distance-based approach is usually more informative when partial SSC is also of interest. Furthermore, we also present a novel bound based on the combination of these two approaches, which is always at least as good as, and in some cases strictly greater than, the maximum of the two bounds. We support our analysis with numerical results for various graphs and leader sets.
In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly
This paper presents conditions for establishing topological controllability in undirected networks of diffusively coupled agents. Specifically, controllability is considered based on the signs of the edges (negative, positive or zero). Our approach d
In this paper, we consider a network of agents with Laplacian dynamics, and study the problem of improving network robustness by adding a maximum number of edges within the network while preserving a lower bound on its strong structural controllabili
This paper investigates several cost-sparsity induced optimal input selection problems for structured systems. Given are an autonomous system and a prescribed set of input links, where each input link has a non-negative cost. The problems include sel
This paper develops tools to quantify the importance of agent interactions and its impact on global performance metrics for networks modeled as linear time-invariant systems. We consider Gramian-based performance metrics and propose a novel notion of