ﻻ يوجد ملخص باللغة العربية
This paper develops tools to quantify the importance of agent interactions and its impact on global performance metrics for networks modeled as linear time-invariant systems. We consider Gramian-based performance metrics and propose a novel notion of edge centrality that encodes the first-order variation in the metric with respect to the modification of the corresponding edge weight, including for those edges not present in the network. The proposed edge centrality matrix (ECM) is additive over the set of inputs, i.e., it captures the specific contribution to each edges centrality of the presence of any given actuator. We provide a full characterization of the ECM structure for the class of directed stem-bud networks, showing that non-zero entries are only possible at specific sub/super-diagonals determined by the network size and the length of its bud. We also provide bounds on the value of the trace, trace inverse, and log-det of the Gramian before and after single-edge modifications, and on the edge-modification weight to ensure the modified network retains stability. Simulations show the utility of the proposed edge centrality notion and validate our results.
In this paper, we consider a network of agents with Laplacian dynamics, and study the problem of improving network robustness by adding a maximum number of edges within the network while preserving a lower bound on its strong structural controllabili
In power system dynamic simulation, up to 90% of the computational time is devoted to solve the network equations, i.e., a set of linear equations. Traditional approaches are based on sparse LU factorization, which is inherently sequential. In this p
In contrast with the scalar-weighted networks, where bipartite consensus can be achieved if and only if the underlying signed network is structurally balanced, the structural balance property is no longer a graph-theoretic equivalence to the bipartit
In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly
We study the strong structural controllability (SSC) of diffusively coupled networks, where the external control inputs are injected to only some nodes, namely the leaders. For such systems, one measure of controllability is the dimension of strong s