ترغب بنشر مسار تعليمي؟ اضغط هنا

Encoding Impact of Network Modification on Controllability via Edge Centrality Matrix

71   0   0.0 ( 0 )
 نشر من قبل Prasad Chanekar
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper develops tools to quantify the importance of agent interactions and its impact on global performance metrics for networks modeled as linear time-invariant systems. We consider Gramian-based performance metrics and propose a novel notion of edge centrality that encodes the first-order variation in the metric with respect to the modification of the corresponding edge weight, including for those edges not present in the network. The proposed edge centrality matrix (ECM) is additive over the set of inputs, i.e., it captures the specific contribution to each edges centrality of the presence of any given actuator. We provide a full characterization of the ECM structure for the class of directed stem-bud networks, showing that non-zero entries are only possible at specific sub/super-diagonals determined by the network size and the length of its bud. We also provide bounds on the value of the trace, trace inverse, and log-det of the Gramian before and after single-edge modifications, and on the edge-modification weight to ensure the modified network retains stability. Simulations show the utility of the proposed edge centrality notion and validate our results.



قيم البحث

اقرأ أيضاً

In this paper, we consider a network of agents with Laplacian dynamics, and study the problem of improving network robustness by adding a maximum number of edges within the network while preserving a lower bound on its strong structural controllabili ty (SSC) at the same time. Edge augmentation increases networks robustness to noise and structural changes, however, it could also deteriorate network controllability. Thus, by exploiting relationship between network controllability and distances between nodes in graphs, we formulate an edge augmentation problem with a constraint to preserve distances between certain node pairs, which in turn guarantees that a lower bound on SSC is maintained even after adding edges. In this direction, first we choose a node pair and maximally add edges while maintaining the distance between selected nodes. We show that an optimal solution belongs to a certain class of graphs called clique chains. Then, we present an algorithm to add edges while preserving distances between a certain collection of nodes. Further, we present a randomized algorithm that guarantees a desired approximation ratio with high probability to solve the edge augmentation problem. Finally, we evaluate our results on various networks.
59 - Lu Zhang , Bin Wang , Vivek Sarin 2021
In power system dynamic simulation, up to 90% of the computational time is devoted to solve the network equations, i.e., a set of linear equations. Traditional approaches are based on sparse LU factorization, which is inherently sequential. In this p aper, an inverse-based network solution is proposed by a hierarchical method for computing and store the approximate inverse of the conductance matrix in electromagnetic transient (EMT) simulations. The proposed method can also efficiently update the inverse by modifying only local sub-matrices to reflect changes in the network, e.g., loss of a line. Experiments on a series of simplified 179-bus Western Interconnection demonstrate the advantages of the proposed methods.
In contrast with the scalar-weighted networks, where bipartite consensus can be achieved if and only if the underlying signed network is structurally balanced, the structural balance property is no longer a graph-theoretic equivalence to the bipartit e consensus in the case of signed matrix-weighted networks. To re-establish the relationship between the network structure and the bipartite consensus solution, the non-trivial balancing set is introduced which is a set of edges whose sign negation can transform a structurally imbalanced network into a structurally balanced one and the weight matrices associated with edges in this set have a non-trivial intersection of null spaces. We show that necessary and/or sufficient conditions for bipartite consensus on matrix-weighted networks can be characterized by the uniqueness of the non-trivial balancing set, while the contribution of the associated non-trivial intersection of null spaces to the steady-state of the matrix-weighted network is examined. Moreover, for matrix-weighted networks with a positive-negative spanning tree, necessary and sufficient condition for bipartite consensus using the non-trivial balancing set is obtained. Simulation examples are provided to demonstrate the theoretical results.
169 - Yuan Zhang , Yuanqing Xia 2021
In linear control theory, a structured system is a system whose entries of its system matrices are either fixed zero or indeterminate. This system is structurally controllable, if there exists a realization of it that is controllable, and is strongly structurally controllable (SSC), if for any nonzero values of the indeterminate entries, the corresponding system is controllable. This paper introduces a new controllability notion, termed partial strong structural controllability (PSSC), which naturally extends SSC and bridges the gap between structural controllability and SSC. Dividing the indeterminate entries into two categories, generic entries and unspecified entries, a system is PSSC, if for almost all values of the generic entries in the parameter space except for a set of measure zero, and any nonzero (complex) values of the unspecified entries, the corresponding system is controllable. We highlight that this notion generalizes the generic property embedded in the conventional structural controllability for single-input systems. We then give algebraic and (bipartite) graph-theoretic necessary and sufficient conditions for single-input systems to be PSSC. Conditions for multi-input systems are subsequently given for a particular case. We also extend our results to the case where the unspecified entries can take either nonzero values or zero/nonzero values. Finally, we show the established results can induce a new graph-theoretic criterion for SSC in maximum matchings over the system bipartite graph representations.
We study the strong structural controllability (SSC) of diffusively coupled networks, where the external control inputs are injected to only some nodes, namely the leaders. For such systems, one measure of controllability is the dimension of strong s tructurally controllable subspace, which is equal to the smallest possible rank of controllability matrix under admissible (positive) coupling weights. In this paper, we compare two tight lower bounds on the dimension of strong structurally controllable subspace: one based on the distances of followers to leaders, and the other based on the graph coloring process known as zero forcing. We show that the distance-based lower bound is usually better than the zero-forcing-based bound when the leaders do not constitute a zero-forcing set. On the other hand, we also show that any set of leaders that can be shown to achieve complete SSC via the distance-based bound is necessarily a zero-forcing set. These results indicate that while the zero-forcing based approach may be preferable when the focus is only on verifying complete SSC, the distance-based approach is usually more informative when partial SSC is also of interest. Furthermore, we also present a novel bound based on the combination of these two approaches, which is always at least as good as, and in some cases strictly greater than, the maximum of the two bounds. We support our analysis with numerical results for various graphs and leader sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا