ﻻ يوجد ملخص باللغة العربية
Direct imaging in the infrared at the diffraction limit of large telescopes is a unique probe of the properties of young planetary systems. We survey 55 single class I and class II stars in Taurus in the L filter using natural and laser guide star adaptive optics and the near-infrared camera (NIRC2) of the Keck II telescope, in order to search for planetary mass companions. We use both reference star differential imaging and kernel phase techniques, achieving typical 5-sigma contrasts of ~6 magnitudes at separations of 0.2 and ~8 magnitudes beyond 0.5. Although we do not detect any new faint companions, we constrain the frequency of wide separation massive planets, such as HR 8799 analogues. We find that, assuming hot-start models and a planet distribution with power-law mass and semi-major axis indices of -0.5 and -1, respectively, less than 20% of our target stars host planets with masses >2 MJ at separations >10 AU.
Directly-imaged planetary-mass companions offer unique opportunities in atmospheric studies of exoplanets. They share characteristics of both brown dwarfs and transiting exoplanets, therefore, are critical for connecting atmospheric characterizations
We present the results of a direct-imaging survey for very large separation ($>$100 au), companions around 95 nearby young K5-L5 stars and brown dwarfs. They are high-likelihood candidates or confirmed members of the young ($lessapprox$150 Myr) $beta
We present a high-resolution ($sim0.12$, $sim16$ au, mean sensitivity of $50~mu$Jy~beam$^{-1}$ at 225 GHz) snapshot survey of 32 protoplanetary disks around young stars with spectral type earlier than M3 in the Taurus star-forming region using Atacam
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial ve
We have performed extensive simulations to explore the possibility of detecting eclipses and transits of close, sub-stellar and planetary companions to white dwarfs in WASP light-curves. Our simulations cover companions $sim0.3Re<{rm R}_{pl}<12Re$ an