ﻻ يوجد ملخص باللغة العربية
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial velocity precision of ~80 m/s with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on radial velocity variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Cha I (7%) and Tau-Aur (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient radial velocity precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.
Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We p
We present fundamental parameters for 110 canonical K- & M-type (1.3$-$0.13$M_odot$) Taurus-Auriga young stellar objects (YSOs). The analysis produces a simultaneous determination of effective temperature ($T_{rm eff}$), surface gravity ($log$ g), ma
We present 5 to 36 micron mid-infrared spectra of 82 young stars in the ~2 Myr old Chamaeleon I star-forming region, obtained with the Spitzer Infrared Spectrograph (IRS). We have classified these objects into various evolutionary classes based on th
The Taurus-Auriga association and its associated molecular cloud are a benchmark population for studies of star and planet formation. The census of Taurus-Auriga has been assembled over seven decades and has inherited the biases, incompleteness, and
Direct imaging in the infrared at the diffraction limit of large telescopes is a unique probe of the properties of young planetary systems. We survey 55 single class I and class II stars in Taurus in the L filter using natural and laser guide star ad