ترغب بنشر مسار تعليمي؟ اضغط هنا

Cloud Atlas: High-Contrast Time-Resolved Observations of Planetary-Mass Companions

96   0   0.0 ( 0 )
 نشر من قبل Yifan Zhou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Directly-imaged planetary-mass companions offer unique opportunities in atmospheric studies of exoplanets. They share characteristics of both brown dwarfs and transiting exoplanets, therefore, are critical for connecting atmospheric characterizations for these objects. Rotational phase mapping is a powerful technique to constrain the condensate cloud properties in ultra-cool atmospheres. Applying this technique to directly-imaged planetary-mass companions will be extremely valuable for constraining cloud models in low mass and surface gravity atmospheres and for determining the rotation rate and angular momentum of substellar companions. Here, we present Hubble Space Telescope Wide Field Camera 3 near-infrared time-resolved photometry for three planetary-mass companions, AB Pic B, 2M0122B, and 2M1207b. Using two-roll differential imaging and hybrid point spread function modeling, we achieve sub-percent photometric precision for all three observations. We find tentative modulations ($<!!2sigma$) for AB Pic B and 2M0122B but cannot reach conclusive results on 2M1207b due to strong systematics. The relatively low significance of the modulation measurements cannot rule out the hypothesis that these planetary-mass companions have the same vertical cloud structures as brown dwarfs. Our rotation rate measurements, combined with archival period measurements of planetary-mass companions and brown dwarfs do not support a universal mass-rotation relation. The high precision of our observations and the high occurrence rates of variable low-surface gravity objects encourage high-contrast time-resolved observations with the James Webb Space Telescope.



قيم البحث

اقرأ أيضاً

HD106906b is an ~11$M_{mathrm{Jup}}$, ~15Myr old directly-imaged exoplanet orbiting at an extremely large distance from its host star. The wide separation (7.11 arcsec) between HD106906b and its host star greatly reduces the difficulty in direct-imag ing observations, making it one of the most favorable directly-imaged exoplanets for detailed characterization. In this paper, we present HST/WFC3/IR time-resolved observations of HD106906b in the F127M, F139M, and F153M bands. We have achieved ~1% precision in the lightcurves in all three bands. The F127M lightcurve demonstrates marginally-detectable ($2.7sigma$ significance) variability with a best-fitting period of 4 hr, while the lightcurves in the other two bands are consistent with flat lines. We construct primary-subtracted deep images and use these images to exclude additional companions to HD106906 that are more massive than 4$M_{mathrm{Jup}}$ and locate at projected distances of more than ~500 au. We measure the astrometry of HD106906b in two HST/WFC3 epochs and achieve precisions better than 2.5 mas. The position angle and separation measurements do not deviate from those in the 2004 HST/ACS/HRC images for more than $1sigma$ uncertainty. We provide the HST/WFC3 astrometric results for 25 background stars that can be used as reference sources in future precision astrometry studies. Our observations also provide the first 1.4-micron water band photometric measurement for HD106906b. HD106906bs spectral energy distribution and the best-fitting BT-Settl model have an inconsistency in the 1.4-micron water absorption band, which highlights the challenges in modeling atmospheres of young planetary-mass objects.
Direct imaging in the infrared at the diffraction limit of large telescopes is a unique probe of the properties of young planetary systems. We survey 55 single class I and class II stars in Taurus in the L filter using natural and laser guide star ad aptive optics and the near-infrared camera (NIRC2) of the Keck II telescope, in order to search for planetary mass companions. We use both reference star differential imaging and kernel phase techniques, achieving typical 5-sigma contrasts of ~6 magnitudes at separations of 0.2 and ~8 magnitudes beyond 0.5. Although we do not detect any new faint companions, we constrain the frequency of wide separation massive planets, such as HR 8799 analogues. We find that, assuming hot-start models and a planet distribution with power-law mass and semi-major axis indices of -0.5 and -1, respectively, less than 20% of our target stars host planets with masses >2 MJ at separations >10 AU.
Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We pr esent a high signal-to-noise spectral library (1.10-1.69 microns) of the thermal emission of 76 brown dwarfs and hot Jupiters. All our spectra have been acquired with the Hubble Space Telescopes Wide Field Camera 3 instrument and its G141 grism. The near-infrared spectral types of these objects range from L4 to Y1. Eight of our targets have estimated masses below the deuterium-burning limit. We analyze the database to identify peculiar objects and/or multiple systems, concluding that this sample includes two very-low-surface-gravity objects and five intermediate-surface-gravity objects. In addition, spectral indices designed to search for composite atmosphere brown dwarfs, indicate that eight objects in our sample are strong candidates to have such atmospheres. None of these objects are overluminous, thus their composite atmospheres are unlikely a companion-induced artifact. Five of the eight confirmed candidates have been reported as photometrically variable, suggesting that composite atmospheric indices are useful in identifying brown dwarfs with strongly heterogeneous cloud covers. We compare hot Jupiters and brown dwarfs in a near-infrared color-magnitude diagram. We confirm that the coldest hot Jupiters in our sample have spectra similar to mid-L dwarfs, and the hottest hot Jupiters have spectra similar to those of M-dwarfs. Our sample provides a uniform dataset of a broad range of ultracool atmospheres, allowing large-scale, comparative studies, and providing a HST legacy spectral library.
Among the greatest challenges in understanding ultra-cool brown dwarf and exoplanet atmospheres is the evolution of cloud structure as a function of temperature and gravity. In this study, we present the rotational modulations of GU Psc b -- a rare m id-T spectral type planetary-mass companion at the end of the L/T spectral type transition. Based on the HST/WFC3 1.1-1.67$rm, mu m$ time-series spectra, we observe a quasi-sinusoidal light curve with a peak-to-trough flux variation of 2.7 % and a minimum period of eight hours. The rotation-modulated spectral variations are weakly wavelength-dependent, or largely gray between 1.1-1.67$rm,mu$m. The gray modulations indicate that heterogeneous clouds are present in the photosphere of this low-gravity mid-T dwarf. We place the color and brightness variations of GU Psc b in the context of rotational modulations reported for mid-L to late-T dwarfs. Based on these observations, we report a tentative trend: mid-to-late T dwarfs become slightly redder in $J-H$ color with increasing $J$-band brightness, while L dwarfs become slightly bluer with increasing brightness. If this trend is verified with more T-dwarf samples, it suggests that in addition to the mostly gray modulations, there is a second-order spectral-type dependence on the nature of rotational modulations.
We report the discovery of three planetary-mass companions (M = 6--20 $M_{Jup}$) in wide orbits ($rho sim$ 150--300 AU) around the young stars FW Tau (Taurus-Auriga), ROXs 12 (Ophiuchus), and ROXs 42B (Ophiuchus). All three wide planetary-mass compan ions (PMCs) were reported as candidate companions in previous binary survey programs, but then were neglected for $>$10 years. We therefore obtained followup observations which demonstrate that each candidate is comoving with its host star. Based on the absolute $M_{K}$ magnitudes, we infer masses (from hot-start evolutionary models) and projected separations of 10 $pm$ 4 $M_{Jup}$ and 330 $pm$ 30 AU for FW Tau b, 16 $pm$ 4 $M_{Jup}$ and 210 $pm$ 20 AU for ROXs 12 b, and 10 $pm$ 4 $M_{Jup}$ and 140 $pm$ 10 AU for ROXs 42B b. We also present similar observations for ten other candidates which show that they are unassociated field stars, as well as multicolor JHKL near-infrared photometry for our new PMCs and for five previously-identified substellar or planetary-mass companions. The NIR photometry for our sample of eight known and new companions generally parallels the properties of free-floating low-mass brown dwarfs in these star-forming regions. However, 5 of the 7 objects with M $<$ 30 $M_{Jup}$ are redder in K-L than the distribution of young free-floating counterparts of similar J-K. We speculate that this distinction could indicate a structural difference in circum-planetary disks, perhaps tied to higher disk mass since at least two of the objects in our sample are known to be accreting more vigorously than typical free-floating counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا