ترغب بنشر مسار تعليمي؟ اضغط هنا

Improve Generalization and Robustness of Neural Networks via Weight Scale Shifting Invariant Regularizations

74   0   0.0 ( 0 )
 نشر من قبل Ziquan Liu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Using weight decay to penalize the L2 norms of weights in neural networks has been a standard training practice to regularize the complexity of networks. In this paper, we show that a family of regularizers, including weight decay, is ineffective at penalizing the intrinsic norms of weights for networks with positively homogeneous activation functions, such as linear, ReLU and max-pooling functions. As a result of homogeneity, functions specified by the networks are invariant to the shifting of weight scales between layers. The ineffective regularizers are sensitive to such shifting and thus poorly regularize the model capacity, leading to overfitting. To address this shortcoming, we propose an improved regularizer that is invariant to weight scale shifting and thus effectively constrains the intrinsic norm of a neural network. The derived regularizer is an upper bound for the input gradient of the network so minimizing the improved regularizer also benefits the adversarial robustness. Residual connections are also considered and we show that our regularizer also forms an upper bound to input gradients of such a residual network. We demonstrate the efficacy of our proposed regularizer on various datasets and neural network architectures at improving generalization and adversarial robustness.

قيم البحث

اقرأ أيضاً

Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure o f a networks simplicity which we call prunability: the smallest emph{fraction} of the networks parameters that can be kept while pruning without adversely affecting its training loss. We show that this measure is highly predictive of a models generalization performance across a large set of convolutional networks trained on CIFAR-10, does not grow with network size unlike existing pruning-based measures, and exhibits high correlation with test set loss even in a particularly challenging double descent setting. Lastly, we show that the success of prunability cannot be explained by its relation to known complexity measures based on models margin, flatness of minima and optimization speed, finding that our new measure is similar to -- but more predictive than -- existing flatness-based measures, and that its predictions exhibit low mutual information with those of other baselines.
We propose emph{MaxUp}, an embarrassingly simple, highly effective technique for improving the generalization performance of machine learning models, especially deep neural networks. The idea is to generate a set of augmented data with some random pe rturbations or transforms and minimize the maximum, or worst case loss over the augmented data. By doing so, we implicitly introduce a smoothness or robustness regularization against the random perturbations, and hence improve the generation performance. For example, in the case of Gaussian perturbation, emph{MaxUp} is asymptotically equivalent to using the gradient norm of the loss as a penalty to encourage smoothness. We test emph{MaxUp} on a range of tasks, including image classification, language modeling, and adversarial certification, on which emph{MaxUp} consistently outperforms the existing best baseline methods, without introducing substantial computational overhead. In particular, we improve ImageNet classification from the state-of-the-art top-1 accuracy $85.5%$ without extra data to $85.8%$. Code will be released soon.
We investigate the power of censoring techniques, first developed for learning {em fair representations}, to address domain generalization. We examine {em adversarial} censoring techniques for learning invariant representations from multiple studies (or domains), where each study is drawn according to a distribution on domains. The mapping is used at test time to classify instances from a new domain. In many contexts, such as medical forecasting, domain generalization from studies in populous areas (where data are plentiful), to geographically remote populations (for which no training data exist) provides fairness of a different flavor, not anticipated in previous work on algorithmic fairness. We study an adversarial loss function for $k$ domains and precisely characterize its limiting behavior as $k$ grows, formalizing and proving the intuition, backed by experiments, that observing data from a larger number of domains helps. The limiting results are accompanied by non-asymptotic learning-theoretic bounds. Furthermore, we obtain sufficient conditions for good worst-case prediction performance of our algorithm on previously unseen domains. Finally, we decompose our mappings into two components and provide a complete characterization of invariance in terms of this decomposition. To our knowledge, our results provide the first formal guarantees of these kinds for adversarial invariant domain generalization.
Adversarial robustness has emerged as a desirable property for neural networks. Prior work shows that robust networks perform well in some out-of-distribution generalization tasks, such as transfer learning and outlier detection. We uncover a differe nt kind of out-of-distribution generalization property of such networks, and find that they also do well in a task that we call nearest category generalization (NCG) - given an out-of-distribution input, they tend to predict the same label as that of the closest training example. We empirically show that this happens even when the out-of-distribution inputs lie outside the robustness radius of the training data, which suggests that these networks may generalize better along unseen directions on the natural image manifold than arbitrary unseen directions. We examine how performance changes when we change the robustness regions during training. We then design experiments to investigate the connection between out-of-distribution detection and nearest category generalization. Taken together, our work provides evidence that robust neural networks may resemble nearest neighbor classifiers in their behavior on out-of-distribution data. The code is available at https://github.com/yangarbiter/nearest-category-generalization
Recent research has highlighted the role of relational inductive biases in building learning agents that can generalize and reason in a compositional manner. However, while relational learning algorithms such as graph neural networks (GNNs) show prom ise, we do not understand how effectively these approaches can adapt to new tasks. In this work, we study the task of logical generalization using GNNs by designing a benchmark suite grounded in first-order logic. Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics, represented as knowledge graphs. GraphLog consists of relation prediction tasks on 57 distinct logical domains. We use GraphLog to evaluate GNNs in three different setups: single-task supervised learning, multi-task pretraining, and continual learning. Unlike previous benchmarks, our approach allows us to precisely control the logical relationship between the different tasks. We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training, and our results highlight new challenges for the design of GNN models. We publicly release the dataset and code used to generate and interact with the dataset at https://www.cs.mcgill.ca/~ksinha4/graphlog.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا