ﻻ يوجد ملخص باللغة العربية
Adversarial robustness has emerged as a desirable property for neural networks. Prior work shows that robust networks perform well in some out-of-distribution generalization tasks, such as transfer learning and outlier detection. We uncover a different kind of out-of-distribution generalization property of such networks, and find that they also do well in a task that we call nearest category generalization (NCG) - given an out-of-distribution input, they tend to predict the same label as that of the closest training example. We empirically show that this happens even when the out-of-distribution inputs lie outside the robustness radius of the training data, which suggests that these networks may generalize better along unseen directions on the natural image manifold than arbitrary unseen directions. We examine how performance changes when we change the robustness regions during training. We then design experiments to investigate the connection between out-of-distribution detection and nearest category generalization. Taken together, our work provides evidence that robust neural networks may resemble nearest neighbor classifiers in their behavior on out-of-distribution data. The code is available at https://github.com/yangarbiter/nearest-category-generalization
Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure o
Mixup is a popular data augmentation technique based on taking convex combinations of pairs of examples and their labels. This simple technique has been shown to substantially improve both the robustness and the generalization of the trained model. H
Using weight decay to penalize the L2 norms of weights in neural networks has been a standard training practice to regularize the complexity of networks. In this paper, we show that a family of regularizers, including weight decay, is ineffective at
Adversarial training can considerably robustify deep neural networks to resist adversarial attacks. However, some works suggested that adversarial training might comprise the privacy-preserving and generalization abilities. This paper establishes and
Generalization of deep networks has been of great interest in recent years, resulting in a number of theoretically and empirically motivated complexity measures. However, most papers proposing such measures study only a small set of models, leaving o