ترغب بنشر مسار تعليمي؟ اضغط هنا

The April-June 2020 super-outburst of OJ 287 and its long-term multiwavelength light curve with Swift: binary supermassive black hole and jet activity

74   0   0.0 ( 0 )
 نشر من قبل S. Komossa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report detection of a very bright X-ray-UV-optical outburst of OJ 287 in April-June 2020; the second brightest since the beginning of our Swift multi-year monitoring in late 2015. It is shown that the outburst is predominantly powered by jet emission. Optical-UV-X-rays are closely correlated, and the low-energy part of the XMM-Newton spectrum displays an exceptionally soft emission component consistent with a synchrotron origin. A much harder X-ray powerlaw component (Gamma-x = 2.4, still relatively steep when compared to expectations from inverse-Compton models) is detected out to 70 keV by NuSTAR. We find evidence for reprocessing around the Fe region, consistent with an absorption line. If confirmed, it implies matter in outflow at approx 0.1c. The multi-year Swift lightcurve shows multiple episodes of flaring or dipping with a total amplitude of variability of a factor of 10 in X-rays, and 15 in the optical-UV. The 2020 outburst observations are consistent with an after-flare predicted by the binary black hole model of OJ 287, where the disk impact of the secondary black hole triggers time-delayed accretion and jet activity of the primary black hole.



قيم البحث

اقرأ أيضاً

88 - S. Komossa , S. Ciprini , L. Dey 2021
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key c omponent in our understanding of galaxy evolution. Dedicated searches for SMBBHs in all stages of their evolution are therefore ongoing and many systems have been discovered in recent years. Here we provide a review of the status of observations with a focus on the multiwavelength detection methods and the underlying physics. Finally, we highlight our ongoing, dedicated multiwavelength program MOMO (for Multiwavelength Observations and Modelling of OJ 287). OJ 287 is one of the best candidates to date for hosting a sub-parsec SMBBH. The MOMO program carries out a dense monitoring at >13 frequencies from radio to X-rays and especially with Swift since 2015. Results so far included: (1) The detection of two major UV-X-ray outbursts with Swift in 2016/17 and 2020; exhibiting softer-when-brighter behaviour. The non-thermal nature of the outbursts was clearly established and shown to be synchrotron radiation. (2) Swift multi-band dense coverage and XMM-Newton spectroscopy during EHT campaigns caught OJ 287 at an intermediate flux level with synchrotron and IC spectral components. (3) Discovery of a remarkable, giant soft X-ray excess with XMM and NuSTAR during the 2020 outburst. (4) Spectral evidence (at 2sigma) for a relativistically shifted iron absorption line in 2020. (5) The non-thermal 2020 outburst is consistent with an after-flare predicted by the SMBBH model of OJ 287.
We present a comprehensive analysis of all XMM-Newton spectra of OJ 287 spanning 15 years of X-ray spectroscopy of this bright blazar. We also report the latest results from our dedicated Swift UVOT and XRT monitoring of OJ 287 which started in 2015, along with all earlier public Swift data since 2005. During this time interval, OJ 287 was caught in extreme minima and outburst states. Its X-ray spectrum is highly variable and encompasses all states seen in blazars from very flat to exceptionally steep. The spectrum can be decomposed into three spectral components: Inverse Compton (IC) emission dominant at low-states, super-soft synchrotron emission which becomes increasingly dominant as OJ 287 brightens, and an intermediately-soft (Gamma_x=2.2) additional component seen at outburst. This last component extends beyond 10 keV and plausibly represents either a second synchrotron/IC component and/or a temporary disk corona of the primary supermassive black hole (SMBH). Our 2018 XMM-Newton observation, quasi-simultaneous with the Event Horizon Telescope observation of OJ 287, is well described by a two-component model with a hard IC component of Gamma_x=1.5 and a soft synchrotron component. Low-state spectra limit any long-lived accretion disk/corona contribution in X-rays to a very low value of L_x/L_Edd < 5.6 times 10^(-4) (for M_(BH, primary) = 1.8 times 10^10 M_sun). Some implications for the binary SMBH model of OJ 287 are discussed.
The bright blazar OJ 287 is the best-known candidate for hosting a nanohertz gravitational wave (GW) emitting supermassive binary black hole (SMBBH) in the present observable universe. The binary black hole (BBH) central engine model, proposed by Leh to and Valtonen in 1996, was influenced by the two distinct periodicities inferred from the optical light curve of OJ 287. The current improved model employs an accurate general relativistic description to track the trajectory of the secondary black hole (BH) which is crucial to predict the inherent impact flares of OJ 287. The successful observations of three predicted impact flares open up the possibility of using this BBH system to test general relativity in a hitherto unexplored strong field regime. Additionally, we briefly describe an on-going effort to interpret observations of OJ 287 in a Bayesian framework.
90 - S. Komossa , D. Grupe , A. Kraus 2021
Our project MOMO (Multiwavelength observations and modelling of OJ 287) consists of dedicated, dense, long-term flux and spectroscopic monitoring and deep follow-up observations of the blazar OJ 287 at >13 frequencies from the radio to the X-ray band since late 2015. In particular, we are using Swift to obtain optical-UV-X-ray spectral energy distributions (SEDs) and the Effelsberg telescope to obtain radio measurements between 2 and 40 GHz. MOMO is the densest long-term monitoring of OJ 287 involving X-rays and broad-band SEDs. The theoretical part of the project aims at understanding jet and accretion physics of the blazar central engine in general and the supermassive binary black hole scenario in particular. Results are presented in a sequence of publications and so far included: detection and detailed analysis of the bright 2016/17 and 2020 outbursts and the long-term light curve; Swift, XMM and NuSTAR spectroscopy of the 2020 outburst around maximum; and interpretation of selected events in the context of the binary black hole scenario of OJ 287 (papers I-IV). Here, we provide a description of the project MOMO, a summary of previous results, the latest results, and we discuss future prospects.
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole central engin e of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the binary black hole model for OJ~287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the binary black hole central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287s central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole no-hair theorem at the 10% level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا