ﻻ يوجد ملخص باللغة العربية
We report detection of a very bright X-ray-UV-optical outburst of OJ 287 in April-June 2020; the second brightest since the beginning of our Swift multi-year monitoring in late 2015. It is shown that the outburst is predominantly powered by jet emission. Optical-UV-X-rays are closely correlated, and the low-energy part of the XMM-Newton spectrum displays an exceptionally soft emission component consistent with a synchrotron origin. A much harder X-ray powerlaw component (Gamma-x = 2.4, still relatively steep when compared to expectations from inverse-Compton models) is detected out to 70 keV by NuSTAR. We find evidence for reprocessing around the Fe region, consistent with an absorption line. If confirmed, it implies matter in outflow at approx 0.1c. The multi-year Swift lightcurve shows multiple episodes of flaring or dipping with a total amplitude of variability of a factor of 10 in X-rays, and 15 in the optical-UV. The 2020 outburst observations are consistent with an after-flare predicted by the binary black hole model of OJ 287, where the disk impact of the secondary black hole triggers time-delayed accretion and jet activity of the primary black hole.
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key c
We present a comprehensive analysis of all XMM-Newton spectra of OJ 287 spanning 15 years of X-ray spectroscopy of this bright blazar. We also report the latest results from our dedicated Swift UVOT and XRT monitoring of OJ 287 which started in 2015,
The bright blazar OJ 287 is the best-known candidate for hosting a nanohertz gravitational wave (GW) emitting supermassive binary black hole (SMBBH) in the present observable universe. The binary black hole (BBH) central engine model, proposed by Leh
Our project MOMO (Multiwavelength observations and modelling of OJ 287) consists of dedicated, dense, long-term flux and spectroscopic monitoring and deep follow-up observations of the blazar OJ 287 at >13 frequencies from the radio to the X-ray band
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole central engin