ترغب بنشر مسار تعليمي؟ اضغط هنا

Project MOMO: Multiwavelength Observations and Modelling of OJ 287

91   0   0.0 ( 0 )
 نشر من قبل S. Komossa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our project MOMO (Multiwavelength observations and modelling of OJ 287) consists of dedicated, dense, long-term flux and spectroscopic monitoring and deep follow-up observations of the blazar OJ 287 at >13 frequencies from the radio to the X-ray band since late 2015. In particular, we are using Swift to obtain optical-UV-X-ray spectral energy distributions (SEDs) and the Effelsberg telescope to obtain radio measurements between 2 and 40 GHz. MOMO is the densest long-term monitoring of OJ 287 involving X-rays and broad-band SEDs. The theoretical part of the project aims at understanding jet and accretion physics of the blazar central engine in general and the supermassive binary black hole scenario in particular. Results are presented in a sequence of publications and so far included: detection and detailed analysis of the bright 2016/17 and 2020 outbursts and the long-term light curve; Swift, XMM and NuSTAR spectroscopy of the 2020 outburst around maximum; and interpretation of selected events in the context of the binary black hole scenario of OJ 287 (papers I-IV). Here, we provide a description of the project MOMO, a summary of previous results, the latest results, and we discuss future prospects.



قيم البحث

اقرأ أيضاً

Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling o f the secondary BH trajectory around the primary BH and its accretion disk. The expected flare was termed the Eddington flare to commemorate the centennial celebrations of now-famous solar eclipse observations to test general relativity by Sir Arthur Eddington. We analyze the multi-epoch Spitzer observations of the expected flare between 2019 July 31 and 2019 September 6, as well as baseline observations during 2019 February-March. Observed Spitzer flux density variations during the predicted outburst time display a strong similarity with the observed optical pericenter flare from OJ 287 during 2007 September. The predicted flare appears comparable to the 2007 flare after subtracting the expected higher base-level Spitzer flux densities at 3.55 and 4.49 $mu$m compared to the optical R-band. Comparing the 2019 and 2007 outburst lightcurves and the previously calculated predictions, we find that the Eddington flare arrived within 4 hours of the predicted time. Our Spitzer observations are well consistent with the presence of a nano-Hertz gravitational wave emitting spinning massive binary BH that inspirals along a general relativistic eccentric orbit in OJ 287. These multi-epoch Spitzer observations provide a parametric constraint on the celebrated BH no-hair theorem.
88 - S. Komossa , S. Ciprini , L. Dey 2021
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key c omponent in our understanding of galaxy evolution. Dedicated searches for SMBBHs in all stages of their evolution are therefore ongoing and many systems have been discovered in recent years. Here we provide a review of the status of observations with a focus on the multiwavelength detection methods and the underlying physics. Finally, we highlight our ongoing, dedicated multiwavelength program MOMO (for Multiwavelength Observations and Modelling of OJ 287). OJ 287 is one of the best candidates to date for hosting a sub-parsec SMBBH. The MOMO program carries out a dense monitoring at >13 frequencies from radio to X-rays and especially with Swift since 2015. Results so far included: (1) The detection of two major UV-X-ray outbursts with Swift in 2016/17 and 2020; exhibiting softer-when-brighter behaviour. The non-thermal nature of the outbursts was clearly established and shown to be synchrotron radiation. (2) Swift multi-band dense coverage and XMM-Newton spectroscopy during EHT campaigns caught OJ 287 at an intermediate flux level with synchrotron and IC spectral components. (3) Discovery of a remarkable, giant soft X-ray excess with XMM and NuSTAR during the 2020 outburst. (4) Spectral evidence (at 2sigma) for a relativistically shifted iron absorption line in 2020. (5) The non-thermal 2020 outburst is consistent with an after-flare predicted by the SMBBH model of OJ 287.
We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending towards the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z_c = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.
We report detection of a very bright X-ray-UV-optical outburst of OJ 287 in April-June 2020; the second brightest since the beginning of our Swift multi-year monitoring in late 2015. It is shown that the outburst is predominantly powered by jet emiss ion. Optical-UV-X-rays are closely correlated, and the low-energy part of the XMM-Newton spectrum displays an exceptionally soft emission component consistent with a synchrotron origin. A much harder X-ray powerlaw component (Gamma-x = 2.4, still relatively steep when compared to expectations from inverse-Compton models) is detected out to 70 keV by NuSTAR. We find evidence for reprocessing around the Fe region, consistent with an absorption line. If confirmed, it implies matter in outflow at approx 0.1c. The multi-year Swift lightcurve shows multiple episodes of flaring or dipping with a total amplitude of variability of a factor of 10 in X-rays, and 15 in the optical-UV. The 2020 outburst observations are consistent with an after-flare predicted by the binary black hole model of OJ 287, where the disk impact of the secondary black hole triggers time-delayed accretion and jet activity of the primary black hole.
In the binary black hole model of OJ 287 the secondary black hole orbits a much more massive primary, and impacts on the primary accretion disk at predictable times. We update the parameters of the disk, the viscosity $alpha$ and the mass accretion r ate $dot m$. We find $alpha=0.26 pm 0.1$ and $dot m = 0.08 pm 0.04$ in Eddington units. The former value is consistent with Coroniti (1981) and the latter with Marscher and Jorstad (2011). Predictions are made for the 2019 July 30 superflare in OJ 287. We expect that it will take place simultaneously at the Spitzer infrared channels as well as in the optical and that therefore the timing of the flare in optical can be accurately determined from Spitzer observations. We also discuss in detail the light curve of the 2015 flare and find that the radiating volume has regions where bremsstrahlung dominates as well as regions that radiate primarily in synchrotron radiation. The former region produces the unpolarised first flare while the latter region gives rise to a highly polarized second flare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا