ﻻ يوجد ملخص باللغة العربية
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the binary black hole model for OJ~287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the binary black hole central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287s central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole no-hair theorem at the 10% level.
The bright blazar OJ 287 is the best-known candidate for hosting a nanohertz gravitational wave (GW) emitting supermassive binary black hole (SMBBH) in the present observable universe. The binary black hole (BBH) central engine model, proposed by Leh
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling o
OJ287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts which are predictable in a binary black hole model. The model predicted a major optical outburst in December 2015. We found that the outburst did oc
In the binary black hole model of OJ 287 the secondary black hole orbits a much more massive primary, and impacts on the primary accretion disk at predictable times. We update the parameters of the disk, the viscosity $alpha$ and the mass accretion r
Supermassive binary black holes (SMBBHs) are laboratories par excellence for relativistic effects, including precession effects in the Kerr metric and the emission of gravitational waves. Binaries form in the course of galaxy mergers, and are a key c